отя Эйлер, вероятно, никогда не чертил такого графического представления Кёнигсберга, его анализ показывает, что маршрут возможен только в том случае, когда в его каждой промежуточной точке на каждую входящую линию приходится одна исходящая. Если вы снова оказываетесь в этой же точке, должен быть новый мост, по которому в нее можно попасть, и новый мост, по которому ее можно покинуть. Единственные исключения из этого правила — начальная и конечная точки маршрута. От точки, из которой вы начинаете движение, отходит одна линия. К точке, в которой маршрут заканчивается, тоже ведет одна линия. Маршрут обхода любого графа может существовать только тогда, когда в этом графе есть не более двух точек (вершин), к которым подходит нечетное количество линий (ребер), — начальная и конечная точки.