Способность человеческого разума различать в окружающем нас хаосе паттерны подарила нашему виду в высшей степени замечательный шорткат: возможность знать будущее еще до того, как оно станет настоящим.
Способность человеческого разума различать в окружающем нас хаосе паттерны подарила нашему виду в высшей степени замечательный шорткат: возможность знать будущее еще до того, как оно станет настоящим.
отя Эйлер, вероятно, никогда не чертил такого графического представления Кёнигсберга, его анализ показывает, что маршрут возможен только в том случае, когда в его каждой промежуточной точке на каждую входящую линию приходится одна исходящая. Если вы снова оказываетесь в этой же точке, должен быть новый мост, по которому в нее можно попасть, и новый мост, по которому ее можно покинуть. Единственные исключения из этого правила — начальная и конечная точки маршрута. От точки, из которой вы начинаете движение, отходит одна линия. К точке, в которой маршрут заканчивается, тоже ведет одна линия. Маршрут обхода любого графа может существовать только тогда, когда в этом графе есть не более двух точек (вершин), к которым подходит нечетное количество линий (ребер), — начальная и конечная точки.
Как и Эратосфен, Гиппарх использовал две разные точки на поверхности Земли. На Геллеспонте [51] затмение было полным, а в Александрии — лишь частичным: там Луна закрывала только четыре пятых Солнца. Благодаря этому Гиппарх, подобно Эратосфену, получил расстояние, которое он мог измерить на Земле. Сочетание расстояния между двумя точками с измеренными углами, под которыми было видно затмение, позволило ему вычислить расстояние от Земли до Луны тригонометрическими методами.
Этот тригонометрический шорткат давал поразительные возможности. Он побудил Гиппарха начать подготовку первого в истории примера тригонометрических таблиц. В них можно было взять какой-нибудь угол и найти отношение длин сторон прямоугольного треугольника, содержащего такой угол. Даже здесь математики открыли шорткаты, избавляющие их от необходимости строить множество треугольников и измерять длины сторон и величины углов каждого из них.
Суэцкий канал сократил расстояние от Лондона до Аравийского моря на 8900 километров, уменьшив длительность путешествия на 43 процента. О важности этого шортката можно судить по тому, сколько раз за него сражались. Самый известный из таких случаев произошел в 1956 году, когда президент Египта Гамаль Абдель Насер захватил канал, находившийся тогда под управлением Великобритании, чем вызвал Суэцкий кризис. Сегодня через канал проходят 7,5 процента мировых морских перевозок, что приносит Администрации Суэцкого канала, принадлежащей египетскому государству, 5 миллиардов долларов в год.
Не менее важный шорткат, избавивший суда от необходимости огибать мыс Горн на южной оконечности Южной Америки, был открыт в 1954 году. На Панамском канале, соединяющем Атлантический океан с Тихим, действительно есть несколько шлюзов, через которые судам приходится проходить. Но это связано не с разными уровнями моря по разные стороны от канала, а с тем, что делать его достаточно глубоким оказалось слишком дорого. Вместо этого суда, проходящие через Панаму, пересекают искусственное озеро.
Вдохновившись примером Гаусса, я решил заново попытаться выучить русский. Одна из проблем, с которыми я сталкиваюсь, заключается в том, что мне попросту трудно запоминать новые, незнакомые слова. Мой шорткат к запоминанию — выявление паттернов. Но что делать, если паттернов нет? Я хотел узнать, не бывает ли альтернативных шорткатов, которые используют другие. С этим вопросом лучше всего было обратиться к Эду Куку, гроссмейстеру памяти и основателю новой системы изучения языков Memrise.
Декарт изложил эту плодотворную идею — применения координат для описания геометрии — в книге «Геометрия» (1637). При помощи этих чисел, называющихся теперь в честь человека, предложившего такой перевод, декартовыми (картезианскими) координатами, можно определить геометрическое положение не только на поверхности планеты, но и на любом изображении. Словарь Декарта открыл возможность перевода между геометрией и алгеброй.
Великий швейцарский математик XVIII века Леонард Эйлер обнаружил, что подстановка мнимых чисел в показательную функцию — простую функцию возведения числа в степень х, например, 2х — дает довольно любопытные результаты. Получается сочетание волновых функций, очень похожих на те волны, которые впоследствии стали использовать в радарах. Эта связь — ключ к уравнению, которое многие математики считают самым красивым в истории. Дело в том, что один из случаев этой связи между волнами и показательными функциями дает уравнение, связывающее пять важнейших чисел в истории математики — 0, 1, i (квадратный корень из − 1), π = 3,14159… и е = 2,71828… (возможно, самое знаменитое число в математике, не считая π; мы поговорим о нем подробнее в главе 7):
eiπ + 1 = 0
Стоит возвести е в степень, равную произведению i и π, и прибавить к результату 1, как все члены этого выражения волшебным (или математическим) образом сокращаются, и в ответе получается 0. И это одно из любопытных проявлений той связи между показательными и волновыми функциями, которую создают мнимые числа.
Математика показывает, что рост каждого из ресурсов города можно описать одним-единственным волшебным числом, характерным для этого ресурса. При каждом удвоении численности населения города его социальные и экономические параметры тоже увеличиваются, но не просто вдвое, а чуть больше. Замечательно, что для многих ресурсов это «чуть больше» составляет около 15 процентов. Например, если сравнить город с населением 1 миллион человек с городом с населением 2 миллиона, то окажется, что ресторанов, концертных залов, библиотек, школ в более крупном городе больше не в два раза: их количество больше удвоенного на 15 процентов.
Шорткаты, которые ищу я, — это не ответы в конце задачника. Такие шорткаты не приносят удовлетворения. Лучшие из шорткатов возникают после тяжелой и упорной работы над задачей. Они почти что подобны музыкальным произведениям, тем их моментам, когда существующее в музыке напряжение наконец находит разрешение.