Для поддержания работоспособности и надежности сети требуется, чтобы она соответствовала четырем основным требованиям:
1. Отказоустойчивости;
2. Масштабируемость;
3. Качество обслуживание;
4. Безопасность.
DHCP (Dynamic Host Configuration Protocol — протокол динамической настройки узла) — сетевой протокол, позволяющий компьютерам автоматически получать IP-адрес и другие параметры, необходимые для работы в сети TCP/IP. Данный протокол работает по модели «клиент-сервер». Для автоматической конфигурации компьютер-клиент на этапе конфигурации сетевого устройства обращается к так называемому серверу DHCP, и получает от него нужные параметры. Сетевой администратор может задать диапазон адресов, распределяемых сервером среди компьютеров. Это позволяет избежать ручной настройки компьютеров сети и уменьшает количество ошибок. Протокол DHCP используется в большинстве сетей TCP/IP
DNS (Domain Name System — система доменных имён) — компьютерная распределённая система для получения информации о доменах. Чаще всего используется для получения IP-адреса по имени хоста (компьютера или устройства). DNS важна для работы Интернета, так как для соединения с узлом необходима информация о его IP-адресе, а для людей проще запоминать буквенные (обычно осмысленные) адреса, чем последовательность цифр IP-адреса.
Для обеспечения надежности и бесперебойности передачи данных, уменьшения задержек используется разделение сообщения на несколько частей — сегментация
В сетях существует несколько способов передачи данных:
1. Индивидуальная (Unicast);
2. Групповая (Multicast);
3. Широковещательная (Broadcast).
Unicast подразумевает собой передачу данных одному единственному адресату в сети. При передаче данных способом Multicast данные получают одновременно несколько адресатов в сети. Broadcast означает, что данные получат все узлы в сети за исключением того, кто информацию и передает.
Сетевая топология — граф, вершинами которого являются оконечные и промежуточные устройства, а ребрами — физические и информационные связи между вершинами. Схема обеспечивает наглядный способ понимания, каким образом устройства в большой сети связаны между собой. Подразделяется на несколько типов:
1. Физическая топология — отображает физическое расположение промежуточных устройств и кабельных линий;
2. Логическая топология — отображает устройства, порты и схемы адресации.
Среда передачи данных — физический канал, по которому сообщение передается от источника к адресату.
Типы физических сред передачи данных:
1. Медный кабель;
2. Оптоволоконный кабель;
3. Беспроводная связь.
Промежуточные устройства соединяют отдельные оконечные устройства с сетью и могут соединять несколько отдельных сетей для создания глобальных сетей. Такие устройства обеспечивают подключение и прохождение потоков данных по сети
Оконечное устройство является либо отправителем (источником), либо получателем (адресатом) сообщения. Каждому оконечному устройству в сети назначается адрес, чтобы устройства можно было отличить от других. Если оконечное устройство инициирует обмен данными, то в качестве получателя сообщения оно использует адрес оконечного устройства назначения.