имеются пары физических величин, которые нельзя одновременно измерить на произвольном уровне точности.
Одну такую пару образуют положение и импульс, по сути являющиеся мерой движения квантовой частицы. Если вы знаете координату частицы x с определенной погрешностью Δx, то можете описать неопределенность Δp ее импульса p математическим неравенством Δx∙ Δp≥ ħ/2. Здесь ħ — постоянное число природы, известное как приведенная постоянная Планка. Согласно неравенству результат умножения Δx и Δp не может быть меньше ħ/2: то есть чем больше мы знаем о том, где частица находится (чем меньше Δx), тем меньше мы можем знать о том, насколько быстро она движется (тем больше Δp), и наоборот.
Лука Турин предположил, что нос использует детектор колебаний, работающий на квантовом туннелировании. Теория предсказала, что пахучие вещества, состоящие из разных изотопов химических элементов, будут пахнуть по-разному. Эксперименты, проведенные в 2013 году, показали, что плодовые мушки на самом деле различают пахучие вещества с разными изотопами, как и было предсказано теорией
Во время его протекания частица может проходить через кажущийся непроницаемым барьер, используя свои волновые свойства, фактически дематериализуясь в одной точке пространства и
иначе световая энергия будет утеряна. Но чтобы найди центр реакций, экситон должен пересечь лес молекул пигмента, где его энергия, скорее всего, пропадет. Но измерения показывают, что перенос экситонов имеет самую высокую эффективность из всех реакций переноса энергии, близкую при оптимальных условиях к 100%. Этот уровень эффективности трудно объяснить, применяя только классическую физику.
Однако если на более фундаментальном уровне мы полностью доверяем квантовой физике, то должны отказаться по крайней мере от одного из двух наиболее важных принципов классического мира. Один из них – реализм, идея, согласно которой каждый объект обладает свойствами, существующими без наших измерений. Другой – это принцип локальности, утверждающий, что ничто во Вселенной не может влиять на что-то другое мгновенно, то есть быстрее скорости света.
Дэвид Дойч, физик Оксфордского университета и человек, разработавший проект первого квантового компьютера, утверждает, что сейчас мы можем рассуждать о работе такого компьютера только с позиции этого множества вселенных (см. интервью в главе 5). Для него никакая другая интерпретация не имеет смысла