Размещение телескопа в космосе имеет ряд преимуществ. Главная из них – возможность регистрировать электромагнитное излучение в диапазонах, в которых земная атмосфера непрозрачна. В первую очередь – в инфракрасном. Благодаря отсутствию влияния атмосферы
Кстати, а вы слышали о парадоксе Ольберса (фотометрическом парадоксе) (Harrison, 1977)? Если кратко, то суть в следующем: если Вселенная действительно бесконечна и имеет число звёзд, фактически стремящееся к бесконечности, то тогда, следуя логике, куда бы ни упал наш взгляд, он должен попасть на звезду. То есть, если допустить, что космос полон звёзд, бесконечен и обладает однородной плотностью, мы будем неизбежно приходить к звезде, независимо от направления.
теорию инфляции. Он предположил, что в первые моменты Вселенная расширялась экспоненциально быстрее, пока этот процесс не привёл к образованию плотного и горячего беспорядка частиц, занявшего место сингулярности.
После рождения Вселенной следующие примерно 380 000 лет всё пространство заполняло облако плазмы. Дальнейшее охлаждение этого облака позволило электронам и протонам объединиться, создав нейтральные атомы водорода, что привело к его рассеиванию. Свет, испускаемый во время этого процесса, растянувшись в микроволны, является теперь самым ранним наблюдаемым явлением во Вселенной и называется реликтовым излучением (космическое микроволновое фоновое излучение).
Распределение реликтового излучения в наблюдаемой Вселенной
Фиксация фонового излучения породила новые дискуссии. Дело в том, что общая теория относительности (ОТО) предполагала сингулярность – начальную точку с неограниченными температурой и плотностью. Колебания таких температуры и плотности должны были породить области с различными свойствами. Температура же реликтового излучения тем временем колеблется в пределах всего долей градуса. Кроме того, кривизна пространства-времени выглядит, если можно так выразиться, довольно плоской, что подразумевает практически идеальный баланс вещества и кривизны в начальном состоянии.
Речь идёт о квантовой теории поля, которая исключает классические представления о реальности. Она гласит, что пространство состоит из квантовых полей, а отдельных частиц (как реальных, так и виртуальных) не существует. То, что нам кажется частицами, представляет собой просто возмущения этих полей.
Таким образом, квантовая теория поля говорит нам, что пустоты вообще не существует, так как квантовые поля – это монолитные структуры. Они заполняют собой всё пространство и имеют в каждой своей точке ненулевую энергию. Колебания этих полей и создают иллюзию рождения частиц.
Поэтому и видимое вещество, и виртуальные частицы, да и вообще всё во Вселенной – лишь рябь квантовых полей. Самая понятная аналогия, которую я встречал, звучит так:
«Считать, что между частицами ничего нет, – всё равно что смотреть на горные вершины и думать, что между ними бесконечная пустота, только потому, что пелена облаков скрывает поверхность под ними».
Понятие пустоты в физике вообще, как выясняется, довольно условно. Как только дело доходит до «абсолютного ничто», в свои права вступает квантовая механика. Физики называют это явление минимальным состоянием энергии.
Даже в самом «пустом» пространстве постоянно рождаются и умирают так называемые виртуальные частицы. Проблема этих частиц заключается в том, что они не способны «закрепиться» в физической Вселенной, так как их свойства далеки от «физического идеала» – они не могут набрать достаточно массы и энергии. Всё, что только можно было «взять» из этой пустоты, чтобы попытаться стать веществом, эти виртуальные частицы «взяли», но этого оказалось мало.
При меньшем значении лямбды сверхскопление станет замкнутой вселенной, в которой начнут происходить термодинамические процессы. Согласно второму началу термодинамики, тепло переходит от более нагретых тел к менее нагретым. В итоге этот процесс дойдёт до той степени, когда тепловое колебание молекул остановится, потому что исчезнет разница температур. Вещество в этот момент станет полностью однородным, движение – невозможным, а время исчезнет. Этот процесс называется тепловой смертью.
По его расчётам, для согласования получаемой разницы постоянной Хаббла при размере нашего «пузыря» около 250 млрд световых лет в диаметре плотность материи в нём должна быть вдвое ниже средней плотности внешней части Вселенной.
В целом эта работа может быть подтверждением в пользу хаотической теории инфляции, согласно которой мы живём лишь в одном из множества пузырей, что очень интересно. Но это уже отдельная тема.