автордың кітабын онлайн тегін оқу Биология
Биология
Учебник для вузов
Виталий Александрович Королев
Сергей Анатольевич Кутя
Татьяна Павловна Сатаева
Существует только один Бог – знания
и только один дьявол – невежество.
Сократ из Аттики
© Виталий Александрович Королев, 2015
© Сергей Анатольевич Кутя, 2015
© Татьяна Павловна Сатаева, 2015
Создано в интеллектуальной издательской системе Ridero
Введение. Определение и задачи биологии как науки
Термин «биология» предложил в 1802 г. создатель первой теории эволюции Жан Батист Ламарк. Дословно, биология – это учение о жизни: «биос» – жизнь и «логос» – учение (с греч.). Наука биология изучаетбиологическую форму движения материи. Это высшая форма движения материи, т.к. она объединяет в себе другие формы – химическую, физическую, механическую (Ф. Энгельс).
Биология относится к естественным наукам и в настоящее время занимает ведущее место в общей системе знаний, поскольку позволяет наиболее полно раскрытьсущность жизни и управлять жизненными процессами.
Главная задача биологии на современном этапе – это создание рациональных взаимоотношений человека и природы, без чего дальнейшее существование жизни на Земле бесперспективно.
Жизнь на Земле олицетворяет живое вещество, представленное огромным многообразием организмов различной степени сложности. В связи с этим в биологии сложились научные направления и оформились специальные науки: вирусология, микробиология, зоология, ботаника и др. В свою очередь, они включают определенные разделы других наук: генетики, биохимии, биомеханики и т. д.
Таким образом, современная биология – этосистема биологических знаний.Особое место в этой системе занимает биология человека.
Человек – биосоциальное существо, представляющее неотъемлемую часть природы. Он подчиняется общим принципам и закономерностям жизнедеятельности. Вместе с тем, человеку, популяциям людей и антропобиоценозам свойственны свои параметры развития и существования, которые наряду с биологическими изучают и социальные науки. Теоретические достижения антропобиологии нашли широкое применение в медицине, что привело к формированию медицинской биологии. В реально обозримом будущем медицинская биология и ее составляющие: молекулярная биология, биология развития, клиническая генетика, паразитология, популяционная генетика человека позволят решить целый ряд, казалось бы, неразрешимых ранее проблем, связанных с профилактикой, диагностикой и лечением многих заболеваний, увеличением продолжительности жизни, оздоровлением среды обитания.
Роль биологии на современном этапе столь велика, что по уровню биологических знаний и развитию биотехнологий в той или иной стране судят об ее научно-техническом потенциале и интеллектуальном состоянии общества.
Научно-техническая революция обогатила биологию широким набором методов и методических комплексов исследований. Все они обязательно указываются в специальных руководствах и учебниках по разделам биологических знаний. Их можно сгруппировать как общебиологические методы и методы по разделам основных биологических наук.
I. Общебиологические методы
Наблюдение. Основано на получении информации о природном процессе, явлении или объекте с последующим анализом и выводами. Наблюдения бывают полевые (на полигонах) или лабораторные (in vivo – протекающие в живом организме, in vitro – вне организма). Частный вид наблюдения —мониторинг: слежение на протяженииопределенного времени за объектами или явлениями, с использованием различных регистрирующих средств.
Эксперимент. Искусственное воспроизведение процесса или природного явления с регистрацией полученных данных и их последующим анализом. Частный вид эксперимента – моделирование, метод исследования сложных объектов или процессов путем их упрощенного иммитирования. Иммитация может быть натурной, математической, логической. Метод базируется на теории подобия.
II. Методы по разделам основных биологических наук
Цитологическиесвязаны с исследованиями клетки: микроскопия – световая, электронная, ультрафиолетовая; метод культуры ткани, метод микрохирургических воздействий на клетку, гистохимические методы.
Генетическиесвязаны с изучением наследственности и изменчивости: гибридологический, генеалогический, близнецовый, популяционно-статистический, цитологический, биохимический; комплекс селекционных методов.
Методы изучения эволюции:исторический, палеонтологический, сравнительно-анатомический, эмбриологический.
Экологические методы:мониторинг, математическое моделирование, эксперимент.
Биотехнологические методы – комплекс наиболее перспективных методик, характеризующих появление синтетической биологии,позволяющей создавать новые биологические компоненты, устройства и системы.
Раздел І. Биологические основы жизнедеятельности. Общая характеристика жизни
Природа жизни
Жизнькак биологическая форма движения материи – одна из наиболее сложных проблем Мироздания. Она объективно существует на планете Земля в течение долгого исторического периода. Одним из первых ученых, представивших основы планетарно-космической организации жизни, был отечественный академик В. И. Вернадский.
Согласно разносторонним оценкам, возраст Земли составляет примерно 4,5—5,0 миллиардов лет. Жизнь на Земле длится около 4,0 миллиардов лет. Таким образом, становление нашей планеты и возникновение на ней жизни в космических параметрах времени произошло почти одновременно. Очевидно, что дальнейшая эволюция происходила при их тесном взаимодействии, нося взаимообусловленный характер. Биолог и геохимик В. И. Вернадский глубоко осмыслил это явление. Им была создана новая обширная область знаний, которую теперь называют наукой о Земле. В ней взаимодействуют геология, геохимия и гидрохимия, почвоведение, география и, конечно, биология. Принципиально новый подход состоял в том, что ученый объединил биоту – живое вещество и сферу его обитания – косное вещество в единое целое – биосферу, живую оболочку Земли.
Живое вещество представлено всей совокупностью живых организмов планеты, существующих в данный момент, независимо от систематики. Оно биохимически чрезвычайно активно и связано с неживой природой непрерывными биогенными потоками атомов и молекул при реализации своих основных функций: питание, дыхание, выделение, размножение. Возникнув, живое вещество приобрело и совершенствовало уникальную способность улавливать, аккумулировать и трансформировать космическую энергию Солнца. Тем самым, в ходе эволюции Земли возник мощный фактор, определивший ход последующих глобальных перестроек ее поверхности. Как отметил В. И. Вернадский, весь лик Земли на современном историческом этапе – ее ландшафты, газовый состав атмосферы, химизм океанов – результат работы живого вещества. Оно придало планете Земля уникальность не только в масштабах Солнечной системы, но, возможно, и Галактики. Идею космической организации жизни во всех ее разнообразных проявлениях, включая человечество, отражают следующие слова выдающегося естествоиспытателя: «Отдельные частные явления соединяются вместе как части одного целого, и в конце концов получается одна картина Вселенной, Космоса, в которую входят и движение небесных светил и строение мельчайших организмов, превращения человеческих обществ, исторические явления, логические законы мышления или бесконечные законы формы и числа» (В. И. Вернадский «Труды по всеобщей истории науки», М., 1988, С. 51—52).
Главные свойства жизни
В состав живых организмов на атомном уровне входят те же химически элементы, что и в состав неживой материи. Однако, на молекулярном уровне возникают различия, выделяющие живое из неживого.
Живые организмы имеют свойственные только им системы химических связей и взаимодействий между молекулами: ковалентные, ионные, водородные связи, гидрофобные взаимодействия. Биополимеры живых организмов способны образовывать интерполимерные комплексы как между отдельными частями молекул, так и между разными молекулами. Возможность образования этих комплексов, их последующие превращения, а также разрушение обеспечивает важнейшее свойство живой системы – обмен веществ. Его содержание составляют синхронизированные процессыассимиляции (процессы синтеза, анаболизм) и диссимиляции (процессы распада, катаболизм). В ходе ассимиляции создаются или обновляются различные морфологические структуры, процесс идет с поглощением энергии и называетсяпластический обмен. При диссимиляции происходит расщепление сложных химических соединений на относительно простые, сопровождающееся выделением энергии – энергетический обмен. Пластический и энергетический обмены тесно взаимосвязаны, составляя единый метаболический цикл. Местом приложения его является клетка.
Живая клетка – этоупорядоченная система, в которой природа объединила форму и процесс, структуру и функцию.
Клеткам живых организмов свойственно получать извне, пропускать и частично выделять различные химические соединения. Следовательно,клетки – это открытые системы. Их работа построена по принципусаморегуляции, которая генетически запрограммирована. Хранение генетической информации и ее последующая реализация в длинном ряду поколений осуществляется системой клеточных нуклеиновых кислот. В целом этообеспечивает фундаментальное свойство жизни – историческую непрерывность биологических процессов.
Одним из обязательных свойств жизни является способность к репродукции (размножение). В ходе размножения организмы дают потомство, то есть производят себе подобных. Тем самым, обеспечивается преемственность между родителями и потомками, реализуется механизм наследственности.
Однако, сходство родителей и потомков не бывает абсолютно полным. В этом состоит механизм изменчивости и связанные с ним эволюционные перестройки.
Жизненным отражением космических процессов является эволюционно выработаннаябиологическая ритмичность – универсальная особенность жизни.
Биоритмы – это количественные и связанные с ними качественные смены биологических процессов, которые проходят на разных уровнях организации. Возникновение их обусловлено планетарными взаимодействиями, вращением Земли вокруг своей оси и вокруг Солнца. Различают экзогенные и эндогенные биоритмы, соответственно вызываемые внешними и внутренними ритмогенными факторами. Самым распространенным является циркадианный (циркадный) суточный биоритм, вытекающий из фотопериода – смены дня и ночи. Растительный и животный мир реагирует на фотопериод фотопериодизмом, сложным комплексом изменений жизнедеятельности. Фотопериодизм служит существенным компонентом таких элементов высшей нервной деятельности как инстинкты. Хронобиология – наука, изучающая закономерности периодически повторяющихся биологических процессов в живом мире.
Важным проявлением жизни служит раздражимость – способность живых организмов реагировать на определенные воздействия окружающей среды. Характер раздражителей, а, следовательно, и ответные адекватные реакции организмов на них очень разнообразны. Они имеют свои особенности у представителей животного и растительного мира.
Наиболее распространенной формой проявления раздражимости служат разнообразные движения – активные и пассивные.Движение – одно из наиболее ярких свойств жизни. В мире животных движения выражены в виде таксисов. Это определенное положительное или отрицательное перемещение относительно раздражителя (фототаксис, термотаксис, хемотаксис). Для растений характерны тропизмы, настии, нутации. В целом движения отражают разные пути эволюционных перестроек и адаптации к среде обитания.
Свойствами живых систем является такжедискретность и целостность, энергозависимость, способностьтрансформировать полученную энергию.
Жизнь многолика. Все ее свойства объединяет единый процесс развития, который охватывает неживую природу, живое вещество и человеческое общество.
Уровни организации жизни
Живая природа представляет сложно организованную систему частей, объединенных общей стратегией жизни. В связи с этим в науке сложились представления об уровнях организации живой материи. Уровень организации определяется по двум принципам – временному и территориальному. Это связано с тем, что разнообразные биологические процессы требуют специфических условий и потому совершаются в определенных границах, выразительно отличаясь по скорости течения. При объединении территориального и временного параметра формируется тот или иной уровень организации в виде сравнительно однородного биологического комплекса. Он характеризуется двумя основными показателями: элементарной структурной единицей и элементарным биологическим явлением. В настоящее время принято выделять следующие уровни:
Молекулярно-генетический уровень.
Элементарные структуры – коды наследственной информации, то есть последовательности триплетов нуклеотидов молекулы ДНК. Элементарные явления – воспроизведение этих кодов по принципу матричного синтеза или конвариантная редупликация (удвоение) молекулы ДНК. Механизм редупликации обусловливает тиражирование генов. Это позволяет передавать генетическую информацию в ряде поколений клеток и обеспечивает механизмы наследственности. Имеющие место случаи ошибок синтеза изменяют кодоны, что сразу же воспроизводится в молекулах копиях. Редупликация становится конвариантной, то есть происходящей с изменениями (явления генных мутаций).
Перенос информации в оформленную структуру, белковую молекулу, обеспечивается набором специализированных внутриклеточных образований – органелл в процессе синтеза белка. Экологические проблемы уровня: рост мутагенных воздействий, увеличение доли мутаций в генофондах.
Клеточный уровень. Элементарные структуры – клетки. Элементарные явления – жизненные циклы клеток. Клетка превращает поступающие в организм вещества и энергию в форму, пригодную для использования организмом, тем самым, обеспечивает процессы жизнедеятельности. Каждая клетка относительно автономна и представляет самостоятельно функционирующую единицу. В составе целого организма клетки объединяются в ткани и органные системы. Между ними налажена система физиолого-биохимических и структурно-функциональных связей, характерная для тканей данного организма. Экологические проблемы уровня: рост клеточной патологии в связи с загрязнением среды, нарушение воспроизводства клеток.
Организменный уровень. Элементарные структуры – организмы и составляющие их системы органов. Элементарные явления – комплекс физиологических процессов, обеспечивающих жизнедеятельность. На данном уровне осуществляется механизм адаптации и складывается определенное поведение живых существ в конкретных условиях среды обитания. Наследственная информация, заключенная в генотипе, реализуется теми или иными фенотипическими проявлениями. Управляющая система —генотип. Экологические проблемы уровня: снижение адаптационных возможностей организмов, развитие пограничных состояний у человека (состояние между здоровьем и болезнью).
Популяционно-видовой уровень. Элементарные структуры – популяции. Элементарные явления – видообразование на основе естественного отбора. Популяция – основная эволюционная единица. Важнейший эволюционно-генетический показатель популяции – её генофонд. Это управляющая подсистема уровня. Генофонд определяет эволюционные перспективы и экологическую пластичность популяций. Имеется ряд факторов, вызывающих изменение генофонда популяций: мутации, генетическая комбинаторика, популяционные волны, изоляция. Реализация изменений происходит путем естественного отбора. Экологические проблемы уровня: ухудшение экологических показателей популяций (численность, плотность, возрастной состав и т.д.).
Биосферно-биогеоценотический уровень. Элементарные структуры – биогеоценозы. Элементарные явления – динамическая взаимосвязь биогеоценозов в масштабах биосферы. Управляющая подсистема уровня – генопласт (термин ввел академик М. А. Голубец). Это совокупность генофондов и генотипов, адаптированных друг к другу популяций в окружающей их среде. Весь комплекс биогеоценозов образует живую оболочку Земли – биосферу. Между биогеоценозами происходит не только материально-энергетический обмен, но и постоянная конкурентная борьба, что придает биосфере в целом большую динамичность. Вся биогеохимическая работа биосферы обеспечивается ее биогеоценозным комплексом. Экологические проблемы уровня: увеличение числа антропоценозов и их глобальное распространение, загрязнение сред, изменение озонового экрана Земли.
На любом уровне живой системы происходит поступательное развитие с обменом веществом, энергией, информацией.
Формы жизни
В настоящее время на планете Земля сложились две формы жизни – неклеточная и клеточная.
Неклеточная форма жизни
Ее представляют вирусы, которых выделяют в самостоятельную группу Вира (Vira).Открытие вирусов связано с именем русского ученого Димитрия Ивановского. В 1892 году им доказано, что вирусы – это субмикроскопические частицы, способные проходить через фильтры и вызывать инфекционные заболевания. Однако, только в 1935 году основатель вирусологии американец Уэнделл Стэнли получил в чистом виде «дедушку» всех вирусов – вирус мозаичной болезни табака. Он установил белковую природу вируса, способность его белков принимать кристаллическую форму.
Вирус парадоксален! Пребывая в состоянии гигантской макромолекулы (частицы), он не проявляет признаков жизни. Живые свойства вируса обнаруживаются только при попадании его в клетку. Здесь он способен, как все живое, быстро размножаться и мутировать, используя структурные компоненты клетки хозяина. Если в инертном состоянии вирус сохраняется годами и даже веками, то его жизненная форма может существовать лишь несколько часов.
Таким образом, вирусы заполняют сумеречную зону жизни. Они расположились на полпути между молекулой и клеткой, живым и неживым.
Вирусы – это паразиты клеток. Каждый вид вирусов может заражать только определенный клеточный набор. В связи с этим выделяют: вирусы растений, животных (включая человека), грибов и бактерий. Последние называются бактериофаги.
Строение вирусов. Зрелые частицы вирусов – вирионы или вироспоры состоят из белковой оболочки и нуклеокапсида, содержащего генетический материал. Иногда под белковым слоем находится слой липидов, что придает капсиду особую прочность и препятствует проникновению ферментов и биологически активных веществ клетки хозяина к вирусу. Это имеет огромное значение для сохранения его функциональной активности. Под оболочкой содержится нуклеиновая кислота – носитель генетической информации вируса.
По своей генетической организации вирусы подразделяются на две группы. Первая группа вирусов включает толькоДНК, которая обычно кольцевидно закручена и имеет одноцепочечную структуру, а не двухцепочечную (двойная спираль).
Вторая группа вирусов содержит РНК. Особенность вирусной РНК состоит в том, что наряду с одноцепочечной структурой она может быть двухцепочечной, то есть приобретать вид двойной спирали (ретровирус, вирус раневых опухолей растений и др.) см. рис.1.
Проникновение вируса в клетки хозяина происходит следующим образом. В месте контакта вируса с клеткой возникает впячивание клеточной мембраны. Оно углубляется внутрь клетки и затем отшнуровывается. В цитоплазме клетки образуется подобие вакуоли, которая вместе с капсидом быстро разрушается и вирусная нуклеиновая кислота оказывается в цитоплазме пораженной клетки.
Дальнейшее взаимодействие может осуществляться двумя способами. Первый состоит в том, что РНК вируса с помощью фермента ревертазы связывается с рибосомой клетки хозяина, в результате чего происходит трансляция генетической информации вируса и в клетке продуцируется патологический вирусный белок. Данный путь характерен для вирусов гриппа и ВИЧ. Второй вид взаимодействия – это способность ДНК вируса встраиваться в ДНК клетки и соответственно передавать свою информацию через геном клетки хозяина. Таким образом реализуют собственные возможности вирусы раковых заболеваний (онковирусы).
Рис. 1. Строение ДНК-содержащего вируса.
Проникнув в клетку хозяина, вирусы быстро подавляют ее системы репарации (восстановления) и могут разрушить клетку. Клетки противодействуют вирусам, вырабатывая антивирусные белки-интерфероны.
Вирус, в отличие от многих клеток, абсолютно лишен собственных средств передвижения. Он передается при непосредственном контакте организмов или через переносчиков, которыми могут быть различные представители животного мира. Несмотря на относительную простоту организации, вирусы прочно удерживают свои позиции в природе. Более того, они усиливают свою агрессивность. На это указывает возросшая частота вирусных заболеваний, а также появление новых вирусов, вызывающих тяжелые заболевания человека: вирус иммунодефицита (СПИД), вирус нетипичной пневмонии.
Клеточная форма жизни
Данную форму жизни представляют клетки двух типов —прокариотические и эукариотические.
Относительно просто устроенные прокариотические, безъядерные, клетки возникли в первичном океане жизни примерно 3,5 миллиарда лет назад. Эукариотические клетки, имеющие ядра, образовались позднее. Мы не имеем неоспоримых доказательств происхождения эукариотических клеток из прокариотических. Здесь возможны пока лишь гипотезы. Важнейшая из них гипотеза клеточного симбиоза. Согласно ей эукариотические клетки вначале эволюционного пути были анаэробными организмами. В дальнейшем установился их стабильный симбиоз с бактериями. Считают, что главная окислительная система клеток эукариот – митохондрии, произошла от особого рода фотосинтезирующих бактерий, утративших способность к фотосинтезу и сохранивших только дыхательную цепь. Возможны и другие комбинации разнообразных жизненных начал. Как бы то ни было, создав биологическую модель в виде клетки, природа в дальнейшем широко использовала ее в ходе эволюции, создавая живые формы различной степени сложности.
Раздел II. Клеточный и молекулярно-генетический уровни организации живого. Клетка – элементарная структурно-функциональная единица живого
Природа довольно редко и достаточно долго создает принципиально новые биологические конструкции. Она предпочитает усовершенствовать и комбинировать уже существующее. Поэтому возникновение клетки как живой системы нового типа явилось важным этапом эволюции. Клетка стала основой строения и развития организмов, поскольку обладаетуниверсальным набором свойств, обеспечивающих жизнедеятельность. Назовем важнейшие из них.
Клетка – саморегулирующаяся система. Она имеет четко синхронизированный цикл жизнедеятельности. Известно, что органические соединения реагируют друг с другом медленно, а жизнь не может поддерживаться за счет медленных реакций. Поэтому живая клетка выработала особые ускорители реакций в виде ферментов или энзимов. Производительность их огромна: некоторые ферменты в течение одной минуты способны разложить до 5-ти миллионов молекул субстрата при температуре 0ºС. Ферменты это не универсальные наборы. Каждый из них может произвести только одно направленное действие, в связи с чем и существуют тысячи ферментов. В клетке они включаются в работу синхронно, со строгой последовательностью во времени и пространстве. Регуляцию осуществляет сама клетка.
Клетка – самовоспроизводящаяся система. Благодаря способности к различным видам делений клетки могут повторять себя в длинном ряду поколений и дочерних форм, что делает их с философской точки зрения бессмертными.
Клетка – система, способная к самоопределению. Молодые клетки обычно очень похожи друг на друга. Однако, в ходе развития каждая клетка идет своим путем. Происходит дифференцировка клеток, связанная с тем, что они должны выполнять строго определенные функции в составе многоклеточного организма. Так, в теле человека насчитывается около 250 типов клеток, причем, каждый тип имеет свое назначение.
Клетка – самовосстанавливающаяся система. Наличие молекулярных механизмов репарации молекулы ДНК, а также регенерации различных внутриклеточных органелл позволяют клетке с высокой степенью надежности исправлять различные повреждения. Не вызывает сомнений, что способность к самовосстановлению закладывалась постепенно в ходе эволюции и совершенствовалась в связи с усложнением клеток.
Клетка – энергетически открытая система. Нормальная жизнедеятельность любого организма невозможна без поступления веществ и энергии. Клетка обеспечивает преобразование этих веществ в форму пригодную для использования организмом. Она располагает универсальным механизмом белковое синтеза, продуцируя белки для собственных нужд и экспортируя их другим клеткам. На клеточном уровне обеспечивается не только вещественно-энергетический обмен между организмом и средой, но и происходит использование наследственной информации. Наследственность невозможна без обмена веществ. Все явления жизни взаимообусловлены, а объединяет их клетка.
Клетка – устойчивая система, доказательством служит весь ход эволюции. За последние 500 миллионов лет клетки фактически не изменились. Их функционирование осуществляется с помощью довольно ограниченного набора унифицированных молекулярных, надмолекулярных и морфологических структур.
Перечисленные выше качественные особенности позволяют рассматривать клетку как элементарную и незаменимую биологическую систему. Детальное изучение клеточных структур и их взаимодействий привело в середине прошлого века к формированию представлений о клеточном уровне организации. Опираясь на данный уровень, оказалось возможным ввести понятия и о других структурных уровнях организации живого, как надклеточных, так и субклеточных.
Рис. 2. Строение животной и растительной клетки.
Итак, возникновение клетки сыграло решающую роль для прогресса жизни на нашей планете. Оно обеспечило: возможность передачи наследственной информации в рядах поколения живых организмов; смену гибнущих в процессе жизнедеятельности структур новыми; рост и развитие организмов путем формирования тканей, являющихся опорным материалом для различных систем органов и всего организма в целом.
История открытия клетки
Открытие клетки связывают с именем Роберта Гука (1665 г.), работавшего попечителем экспериментов в Лондонском Королевском научном обществе. Как физика Р. Гука заинтересовали механические свойства пробкового дерева: прочность, упругость, легкость, непотопляемость. Решив исследовать пробку под микроскопом, Р. Гук предварительно существенно модернизировал этот прибор, сконструированный ранее любителем-натуралистом Антони ван Левенгуком. По сути дела, им создан прототип современного светового микроскопа.
Микроскопия тонких срезов пробкового дерева показала, что оно состоит из многочисленных пустых ячеек, которые Р. Гук назвал сеllulа (позднее cell). Так родился термин «клетка» – ячейка. Представления же о клетке, как о структурной единице живой природы, складывались постепенно. Обязательность наличия ядра в этой структуре установил Я. Пуркинье и позднее Р. Броун (1830 г.). Первому автору вводят в заслугу также введение понятия «протоплазма клетки». Механизм клеточного деления открыл лейпцигский продавец книг В. Гофмейстер (1849 г.), сделавший первые зарисовки делящихся клеток. Позднее, В. Ру показал универсальность этого процесса для живого и растительного мира. Сложнее обстояло дело с изучением клеточных мембран. Эти тончайшие структуры животных клеток плохо вырисовывались в обычном световом микроскопе. Тем не менее, принцип их работы удалось правильно предсказать. Заключительный каскад открытий связан с описанием внутриклеточных структур. Разные ученые передовых европейских стран выявили самые миниатюрные образования, клеточные органеллы. В историю цитологии вошли имена Ван Бенедена, Бенда, Гольджи, Де Дюву. Клетка предстала перед глазами в законченном виде. Это позволило оформить теорию клетки, то есть показать принцип ее структурной организации. Теория клетки – частное. От частного оставался один шаг к общему – созданию клеточной теории.
Клеточная теория
Клеточная теория является крупнейшим достижением естествознания XIX столетия. Она утвердила единый принцип организации живой природы на клеточном уровне, связала растительный и животный мир. Это одно из наиболее широких обобщений в биологии. В разработку ее внесли вклад несколько выдающихся ученых. Первостепенная роль принадлежит Теодору Шванну, немецкому физиологу и гистологу. В книге «Микроскопические исследования о соответствии в структуре и росте животных и растений» (1839 г.) он показал, чтоклетка является главной структурной и функциональной единицей всех животных и растительных организмов.Тем самым, была доказана общность строения и развития животных и растений, провозглашено единство органического мира.
Значительный вклад в разработку клеточной теории внес также ботаник Матиас Шлейден, показавший, что растительные и животные клетки гомологичны, то есть имеют одинаковый принцип организации.
В дальнейшем знаменитый немецкий медик, ученый с непререкаемым авторитетом, Рудольф Вирхов провозгласил: «Оmnis cellula e cellulae», что значит: клетка возникает из клетки путем ее деления. Р. Вирхов первым внедрил клеточную теорию в медицину.
Основные положения клеточной теории
1. Клетка – элементарная структурно-функциональная единица живой материи.
2. Клетки различных организмов сохраняют одинаковый принцип строения.
3. Размножение клеток происходит путем деления исходной материнский клетки.
4. Многоклеточные организмы – это совокупность различных клеток, интегрированных в единую систему живого организма.
Со времени создания клеточной теории наши представления о клетке существенно обогатились, однако суть клеточной теории осталась неизменной.
Химическая организация клетки
Живая клетка – это миниатюрный реактор, в котором не затухают химические процессы. Из 109 элементов периодической системы Д. И. Менделеева клетка включает около 70. Количественные соотношения их варьируют В клетках организма человека значительно преобладает четыре элемента: водород—10%, кислород—60%, углерод – 20%, азот – около 3%. Менее 2% приходится на следующие девять элементов: натрий, кальций, фосфор, железо, сера, калий, хлор, кремний, магний. Все указанные элементы составляют группу макроэлементов. Остальные элементы присутствуют в общем количестве 0,1% массы и относятся к микроэлементам: кобальт, цинк, медь, марганец, хром и другие.
Обратим внимание! Все химические компоненты клетки, вне зависимости от их количества, играют важную роль в жизнедеятельности организма.
В живой клетке химические элементы находятся либо в виде ионов, либо входят в состав молекул органических или неорганических веществ.
Органические вещества – это углеродсодержащие соединения, присутствующие в живых организмах – отсюда и термин органические. Неорганические вещества характерны для живой и неживой природы и имеют другую химическую организацию.
Неорганические вещества
Вода. Это компонент исключительной важности. Вода составляет 80% всей массы клетки. Всеобщая функция воды в клетках – цементирующая. Она состоит в образовании водородных связей между отдельными частицами и компонентами живой клетки. Молекула воды электрически асимметрична. Это электрический диполь, в котором каждый атом водорода несет положительный заряд, а кислорода —отрицательный. В результате и возникает сильное электростатическое напряжение: Н-связь.
Роль воды в клетке многообразна. Она предопределяет рН среды, от которой во многом зависит работа всех систем органов. Благодаря высокой теплоемкости, вода предохраняет клетку от резких колебаний температуры и способствует теплорегуляции. Это хороший растворитель для многих органических и неорганических веществ, а большинство химических реакций в клетке возможно только между растворенными веществами. Поступление и выведение веществ клеткой осуществляется в водных растворах. Вещества, хорошо растворимые в воде, называются гидрофильными. К ним относятся соли, кислоты, многие спирты. Хорошей растворимостью в воде обладает ряд белков и углеводов. Вещества, плохо растворимые в воде, называют гидрофобными. Среди них на первом месте стоят липиды (жиры). Явление гидрофильности и гидрофобности используется при построении полупроницаемых клеточных мембран. Вода является фактором, определяющим термостабильность клетки.
Минеральные соли. Подавляющая часть неорганических веществ клетки находится в виде солей. Они присутствуют в твердом состоянии или диссоциированы на ионы. Для процессов жизнедеятельности наиболее важны катионы К+, Са2+, Мg2+, анионы НРО4-, Н2РО4-, СL-, НСО3-. Концентрация катионов и анионов в клетке и вокруг нее различна и регулирует поступление воды в клетку. В цитоплазме довольно много К+ и мало Na+. Во внеклеточной среде (морская вода, плазма крови) наоборот много Na+ и мало К+. Эти соотношение быстро выравниваются со смертью клетки.
Органические вещества
Органические вещества в большинстве являются биополимерами. Это белки, углеводы, нуклеиновые кислоты. Биополимеры представляют высокомолекулярные химические соединения, состоящие из относительно однородных мономеров. Мономерами белков служат аминокислоты, углеводов (полисахаридов) – моносахариды, нуклеиновых кислот – нуклеотиды.
Биополимеры подразделяют на информационные: белки, нуклеиновые кислоты и неинформационные – углеводы. Липиды не относят к биополимерам. Указанные четыре класса органических соединений составляют основу живых систем.
Белки характеризуются высокой молекулярной массой и большим разнообразием. В организме человека насчитывается около 5 млн. типов белковых молекул. Несмотря на столь широкое представительство, белки образованы всего 20 мономерами – аминокислотами.
Двадцать аминокислот в составе белков
Аминокислоты делятся на две группы
1. Незаменимые аминокислоты не могут синтезироваться животными организмами и обязательно поступают с пищей (аргинин, валин, гистидин, изолейцин, лейцин, метионин, фенилаланин, треонин).
2. Заменимые аминокислоты синтезируются животной клеткой из незаменимых аминокислот или других соединений.
Наличие аминогруппы с основными свойствами и карбоксильной группы с кислотными свойствами дает возможность аминокислотам соединяться в единую цепь за счет прочных ковалентных связей при отщеплении молекулы воды. Ковалентные связи называют пептидными, а последовательное соединение аминокислот в белковой молекуле пептидом: дипептид, трипептид, полипептид. Возможно огромное количество вариантов последовательных наборов 20-ти аминокислот в белковой молекуле.
Белки имеют первичную, вторичную, третичную и четвертичную структуру.
Рис. 3.Структура белка. 1. Первичная. 2. Вторичная. 3. Третичная. 4. Четвертичная.
Первичная структура – это расположение аминокислот последовательно друг за другом в единую цепочку: – лизин – глутамин – валин – и т. д.
Вторичная структура представляет собой полипептидную цепь, закрученную ввиде спирали и имеющую слоисто-складчатое строение.
Третичная и четвертичная структура являются дальнейшим развитием белковой молекулы, которая усложняет пространственную укладку путем различного вида скручиваний. На уровнях третичной и четвертичной структур белки приобретают биологическую активность. Утрата белковой молекулой своей структурной организации называется денатурацией (происходит при изменении температуры, обезвоживании и пр.), а восстановление – ренатурацией. Главное условие полной ренатурации – сохранение первичной структуры белка.
Белки могут быть простыми и сложными. Простые белки состоят только из аминокислот, сложные белки имеют в своем составе другие органические соединения: нуклеиновые кислоты, углеводы, липиды, соединения фосфора, металлы. Соответственно их называют нуклеопротеиды, гликопротеиды, липопротеиды, фосфо- и металлопротеиды.
Функции белков в клетке
По разнообразию и значимости белки стоят на первом месте среди всех органических соединений. Им свойственны следующие функции:
1. Структурная – участие в строительстве клеточных мембран, хромосом, рибосом и других компонентов клетки.
2. Каталитическая. Белки-ферменты являются ускорителями внутриклеточных химических реакций, определяют их специфичность. Все известные ферменты делятся на две группы: простые (однокомпонентные), сложные (двухкомпонентные). Простые ферменты включают только белковую часть – апофермент. Сложные ферменты содержат белковую и небелковую части. Если небелковая часть легко отделяется и связывается с другими ферментами, ее называют коферментом. Ферменты могут иметь один или два активных центра. При наличии одного активного центра он связывается только с субстратом – веществом, на которое действует. В случаях двух активных центров один связывается с субстратом, другой с продуктом реакции. Все ферменты характеризуются специфичностью действия и саморегуляцией.
3. Энергетическая: при полном расщеплении 1г белка освобождается 17,6 кДж.
4. Сигнальная – белки, встроенные в поверхностные слои плазмалеммы (антигены), являются своеобразными «мишенями» для многих биологически активных веществ (гормоны).
5. Защитная – связанная с особой группой иммуноглобулинов, определяющих гуморальный иммунитет организма, кроме того многие белки образуют защитные покровы в виде чешуи, ногтей, копыт, волос и т. д.
Структурная организация клетки
Основными структурными компонентами клетки являются клеточные мембраны, ядро, цитоплазма с цитоскелетом, органеллы и включения.
І. Клеточная мембрана или плазмалемма представляет собой тонкую биологическую пленку, ограничивающую клетку. Она обеспечивает разделение двух фаз: внеклеточной со случайным набором ионов и молекул и внутриклеточной со строго упорядоченным их составом. Для поддержания таких концентрационных градиентов мембрана должна удовлетворять одному абсолютному требованию – необходима ее полная замкнутость. Поэтому все известные биологические мембраны образуют замкнутые пространства —компартменты. Другое важное свойство плазмалеммы – асcимметричность: ее внутренняя и наружная поверхность должны функционировать по-разному. В противном случае молекулы и ионы, вносимые в одном месте, будут столь же быстро выноситься в другом. Таким образом, главная функция клеточной мембраны – обеспечить поступление в клетку веществ и сохранить постоянство ее состава, то есть клеточный гомеостаз.
Основу плазмалеммы составляет двойной слой липидов, расположенных перпендикулярно поверхности. Липиды представлены фосфолипидами и холестеролом. Именно они обеспечивают структурную целостность мембраны. Оба вида липидов амфипатические: один конец молекулы – «головка» – полярный гидрофильный, другой конец – «двойной хвост» – неполярный гидрофобный. Если гидрофильную головку отделить от молекулы, она растворится в воде. Гидрофобный хвост, подобно растительному маслу, в воде не растворим. Гидрофильные головки липидов обращены кнаружи, а гидрофобные концы спрятаны вовнутрь (рис. 4).
Рис. 4. Схема строения липидного комплекса плазмалеммы.
Липидный бислой плазмалеммы прикрыт с обеих сторон белками, которые подразделяются на два класса. Первый класс – трансмембранные белки. Определенная часть их молекулы встроена в двойной липидный слой и пронизывает его насквозь.
Рис. 5. Общая композиция плазмалеммы.
В мембране возникают белковые поры. Второй класс составляют периферические белки, которые не встроены в липиды, а находятся на поверхности. Здесь они вступают в связь с определенными трансмембранными белками. Тем не менее, их можно отделить от мембраны и растворить в воде, в то время как трансмембранные белки не отделимы от липидов и не растворимы в водной среде. Периферические белки сконцентрированы на внутренней и наружной поверхности плазмалеммы. На наружной поверхности к ним примыкают углеводы, формирующие тонкое покрытие клетки —гликокаликс (см. рис. 5).
Функции клеточной мембраны
Клеточная мембрана выполняет две основные функции:
а) межклеточные взаимодействия; б) транспортные процессы.
Обе эти функции во многом определяются белками или гликопротеинами (сложные комплексы белков и углеводов) клеточной мембраны.
Межклеточные взаимодействия.Клетка воспринимает и трансформирует сигналы двух родов: из внешней среды и внутренней среды организма. Раздражители из внешней среды могут иметь различную природу: физическую (кванты света), химическую (вкусовые молекулы), механические (сжатие или растяжение). Из внутренней среды поступают сигналы преимущественно информационного характера, например, гормоны, нейромедиаторы.
Межклеточные взаимодействия реализуются по принципусигнал – ответ. Сигнал воздействует на специфический клеточный рецептор, который обычно представлен особым поверхностным белком или гликопротеином. Ответ состоит в адекватной реакции клетки.
Транспортные процессы.Перенос веществ через клеточную мембрану может осуществляться в виде пассивного транспорта, не требующего затрат энергии и активного транспорта, сопряженного с потреблением энергии.
Пассивный транспорт связан с движением по градиенту концентрации. Он может происходить в обоих направлениях: из клетки в среду и из среды в клетку. Так движутся небольшие полярные (СО2, Н20) и неполярные (02, N2) молекулы. Движение в одном направлении, в клетку, происходит путем облегченной диффузии. В ней участвуют специальные трансмембранные белки, которые называются белки-переносчики. Такие специальные белки существуют для глюкозы, аминокислот, фосфатов и др.
Осмос – перенос вещества из одного раствора в другой через мембрану. Мембраны, проницаемые не для всех веществ, а лишь для определенных, называют полупроницаемыми. Осмос играет важную роль во многих биологических процессах. Мембрана, окружающая нормальную клетку крови, проницаема лишь для молекул воды, кислорода, растворенных в крови питательных веществ и продуктов клеточной жизнедеятельности. Она непроницаема для больших белковых молекул, находящихся в растворенном состоянии внутри клетки. Поэтому белки, столь важные для биологических процессов, остаются внутри клетки.
Активный транспорт происходит против градиента концентрации и потому является энергозависимым. Он происходит при участии ферментов АТФаз. Наиболее известеннатрий-калиевый насос. Его функция выкачивать из клетки Na+ в обмен на К+. Тем самым, насос обеспечивает связанный транспорт множества органических и неорганических молекул. Натрий-калиевый насос – это особый трансмембранный белок. С внутренней стороны клетки к нему поступает Na+ и АТФаза, с наружной К+. Посредством изменения формы белка из клетки активно выкачивается Na+и закачивается К+.
Транспортные клеточные процессы могут осуществляться также путем эндоцитоза и экзоцитоза. При эндоцитозе клетки поглощают макромолекулы и оформленные частицы, окружая их небольшим участком клеточной мембраны. Последняя впячивается вовнутрь клетки, образует везикулы (пузырьки). Если везикулы мелкие и содержат внеклеточную жидкость, процесс называется пиноцитоз. Если они содержат крупные компактные частицы, то формируются фагосомы, а явление известно как фагоцитоз (рис. 6).
Рис. 6.Схема фагоцитоза и пиноцитоза.
Экзоцитоз – это выброс веществ из клетки в виде гранул секрета или вакуолей с клеточной жидкостью.
ІІ. Ядро – центральный аппарат клетки, с которым связано хранение и передача генетической информации, обмен веществ, движение и размножение. Форма ядра чаще округлая или вытянутая, реже дольчатая. От цитоплазмы его отделяет кариолемма(ядерная оболочка). Она состоит из наружной и внутренней ядерных мембран, разделенных бесструктурным веществом. Мембраны имеют поры, обеспечивающие избирательную связь с цитоплазмой. Общее их количество в клетке 3—4 тысячи. Каждая пора встроена в крупную дисковидную структуру, называемую поровый комплекс ядерной оболочки. Заполнено ядро гомогенной массой нуклеоплазмой. В ее состав входят нуклеиновые кислоты и белки.
Комплекс ядерной ДНК со структурными белками (гистонами и негистоновыми белками) называют хроматином. На цитологических препаратах хроматин имеет вид глыбок различной величины и формы. Выделяют эухроматин,генетически активную структуру и гетерохроматин, генетически инертную составляющую.
В период деления клетки в ядре выявляются митотические хромосомы. Они выглядят как короткие палочковидные тельца, обладающие особой индивидуальностью и функцией. Важным компонентом ядра является одно или несколько ядрышек. Это мелкие круглые тельца с высоким содержанием РНК и белка. Ядрышковая РНК участвует в синтезе р-РНК и образовании рибосом (рис. 7).
Генетический аппарат ядра клетки вырабатывает определенные белки-инвенторы, которые регулируют проницаемость клеточной мембраны. Важным элементом старения клетки служит прекращение синтеза инвенторов.
Рис. 7. Схема строения клеточного ядра.
ІІІ. Цитоплазма объединяет все живое вещество клетки, за исключением ядра и ограничивающих клетку мембран. Гомогенная бесструктурная масса цитоплазмы получила название гиалоплазмы(греч. hyalos – стекло и плазма). В ней во взвешенном состоянии находятся органеллы и включения. Агрегатное состояние цитоплазмы бывает жидкое – золь и вязкое – гель. Основу цитоплазмы формирует цитоскелет клетки.
Цитоскелет – сложная сеть микротрубочек и белковых филаментов (нитей). Микротрубочки имеют в диаметре 10—25 нм, содержат белок тубулин. С их помощью происходит транспорт веществ и движение органелл. Микрофиламенты тоньше, в диаметре 4—7 нм, включают белки актин, миозин и выполняют сократительную функцию.
Движение цитоплазмы называется циклоз. Это перемещения самой цитоплазмы или ее структур без изменения формы клетки, например, при клеточной регенерации. Тем самым циклоз отличается от цитокинеза при митозе или амебоидного движения при фагоцитозе. Цитоплазматические движения обеспечивают элементы цитоскелета, они во многом зависят от агрегатного состояния содержимого клетки золь – гель.
Органеллы и включения цитоплазмы
В цитоплазме находятся органеллы и включения. Органеллы – это постоянные высокодифференцированные внутриклеточные образования, выполняющие определенные функции. Они имеют мембранный и немембранный принцип строения.
Классификация органелл
1. Органеллы общего значения: эндоплазматический ретикулум, рибосомы, митохондрии, комплекс Гольджи, лизосомы, центросомы, пластиды.
2. Органеллы специального значения: реснички, жгутики, миофибриллы, нейрофибриллы.
Органеллы общего значения
Эндоплазматический ретикулум (ЭР). Разветвленная внутриклеточная структура, представленная системой субмикроскопических канальцев с расширениями-цистернами. Они ограничены мембранами, несущими многочисленные ферменты. Мембраны ЭР составляют более половины массы всех мембран клетки. Существует два типа ЭР. Гранулярный ЭР, мембраны которого содержат рибосомы. Рибосомы – это ультрамикроскопические, сферические гранулы, состоящие из двух половинок – большой и малой субъединиц, а также рибосомальной РНК. Главное назначение их – участие в синтезе белка (рис. 8).
Рис. 8. Строение рибосом у эукариот.
Гладкий ЭР несет мембраны, лишенные рибосом. Здесь происходит синтез липидов и углеводов. ЭР объединен с ядром клетки, поскольку наружная мембрана ядра непосредственно переходит в мембраны ЭР. Гладкий и гранулярный ЭР связаны друг с другом, но отличаются по составу содержащихся в них белков. Все белки, подлежащие выведению из клетки, проходят путь от рибосом в полость ЭР, оттуда в аппарат Гольджи, а затем в секреторные везикулы (пузырьки), которые выводятся из клетки. Белки, предназначенные для внутриклеточных нужд, используются митохондриями или другими органеллами и никогда не поступают в ЭР (рис. 9).
