Имитационное моделирование движения поезда на участках автономной тяги
Қосымшада ыңғайлырақҚосымшаны жүктеуге арналған QRRuStore · Samsung Galaxy Store
Huawei AppGallery · Xiaomi GetApps

автордың кітабын онлайн тегін оқу  Имитационное моделирование движения поезда на участках автономной тяги

Евгений Лосев

Имитационное моделирование движения поезда на участках автономной тяги






12+

Оглавление

ВВЕДЕНИЕ

Сложные технические процессы математически описываются системой нелинейных дифференциальных уравнений, которые в общем случае не решаются в аналитическом виде, а использование численных методов решения нередко сопряжено со значительными вычислительными трудностями. Визуальное имитационное моделирование таких процессов позволяет наглядно представить их в виде структурной схемы, состоящей из различных блоков — своего рода «кирпичиков», из которых строится «здание», т. е. моделируемая система. К таким сложным техническим процессам относится и процесс движения поезда, моделированию которого на участках автономной тяги посвящена эта книга.

В книге описаны математические модели, созданные средствами пакета Xcos, входящего в свободно распространяемую программу SciLab и являющегося бесплатным аналогом таких коммерческих пакетов как Simulink и VisSim. Несмотря на это, Xcos не уступает им по своим возможностям, во всяком случае, в рамках решаемых нами здесь задач. Скачать SciLab можно на сайте https://www.scilab.org/. Пакет поставляется в версиях для операционных систем Windows, Linux и MacOS.

Структура книги построена следующим образом. В каждой главе рассмотрена группа однотипных задач, решаемых тяговыми расчётами — прикладной частью инженерной дисциплины «Тяга поездов» [1]. В начале главы даётся теоретическое описание задачи; затем приведено построение имитационной модели средствами Xcos; далее представлены результаты моделирования.

Предполагается, что читатель знаком с основами моделирования в среде Xcos или ей аналогичных.

ГЛАВА 1. СИЛА ТЯГИ АВТОНОМНЫХ ЛОКОМОТИВОВ

Сила тяги есть сила реакции рельса FК, приложенная к колесу в точке его касания рельса и равная по величине и направлению силе, приложенной к центру движущей оси и направленной в сторону направления движения.

Сила тяги FК, называемая касательной и приложенная к ободу движущих колёс, определяется из условия, что её работа за оборот колеса равна:

для тепловоза — работе газа во всех цилиндрах дизеля за вычетом работы сил сопротивления в самом дизеле (главным образом трения), энергии, затраченной на вспомогательные нужды (компрессор, холодильник, аккумуляторная батарея, вентиляторы и пр.) и работы сил сопротивления в передаточном механизме;

для газотурбовоза — работе газа на лопатках турбины за вычетом работы, затрачиваемой на компрессор, вспомогательные нужды и на преодоление сил сопротивления в передаточном механизме;

для паровоза — работе пара в паровой машине за вычетом работы сил в дышловом механизме.

Сила тяги любого локомотива ограничена сцеплением колеса с рельсом. Это значит, что сила тяги не может превышать силу сцепления, иначе возникнет боксование. Математически это выражается так:


Fк ≤ 1000ψкPсц, кгс (1)


где Pсц — сцепной вес, тс — сумма нагрузок от всех

движущих осей на рельсы; ψк — коэффициент сцепления.

1.1. Сила тяги и тяговые характеристики тепловозов

Расчётный коэффициент сцепления для тепловозов определяется по эмпирической формуле вида


ψк/ (v), (2)


где

a, b и c — коэффициенты, зависящие от серии тепловоза;

— скорость движения, км/ч.

Подставив (2) в (1), определяем силу тяги по сцеплению.

Кроме ограничения по сцеплению сила тяги тепловоза также ограничивается мощностью дизеля и электрической передачи.

Сила тяги по дизелю определяется выражением


Fк= 0,094dц2lmpinдηмβвспηпер/v/τ, кгс (3)


где

dц — диаметр цилиндров, см;

— ход поршней, м;

m — число цилиндров дизеля;

pi — среднее индикаторное давление, кгс/см2;

nд — частота вращения коленвала, об/мин;

ηм — механический к. п. д. дизеля, учитывающий потери

только в самом дизеле;

βвсп — коэффициент, учитывающий расход мощности на

вспомогательные нагрузки;

ηпер — к.п.д. электрической п

...