ТЕПЛОВОЗЫ. Вехи непройденного пути. Издание второе, переработанное и дополненное
Қосымшада ыңғайлырақҚосымшаны жүктеуге арналған QRRuStore · Samsung Galaxy Store
Huawei AppGallery · Xiaomi GetApps

автордың кітабын онлайн тегін оқу  ТЕПЛОВОЗЫ. Вехи непройденного пути. Издание второе, переработанное и дополненное

Евгений Лосев

ТЕПЛОВОЗЫ. Вехи непройденного пути

Издание второе, переработанное и дополненное

Шрифты предоставлены компанией «ПараТайп»


Рецензенты А.Г. Иоффе, В.С. Руднев





12+

Оглавление

  1. ТЕПЛОВОЗЫ. Вехи непройденного пути
  2. ОТ АВТОРА
  3. ВВЕДЕНИЕ
  4. Глава I ПРЕДШЕСТВЕННИКИ ТЕПЛОВОЗОВ
    1. 1.1. Локомотивы на сжатом воздухе
    2. 1.2. Зарубежные пневмолокомотивы
    3. 1.3. Духоход Барановского
  5. Глава II ТЕПЛОВОЗЫ С НЕПОСРЕДСТВЕННЫМ ПРИВОДОМ
    1. 2.1. Проблема создания тепловоза с непосредственным приводом и пути её решения
    2. 2.2. Тепловоз «Termo» Общества Diesel-Klose-Sulzer GmbH
    3. 2.3. Тепловоз завода Ansaldo
    4. 2.4. Тепловоз завода Deutz
  6. Глава III ТЕПЛОПАРОВОЗЫ
    1. 3.1. Общие сведения
    2. 3.2. Теплопаровозы Стилла
    3. 3.3. Проект теплопаровоза Гильдебранда
    4. 3.4. Пассажирский теплопаровоз Ворошиловградского завода
    5. 3.5. Грузовой теплопаровоз Коломенского завода
    6. 3.6. Грузовой теплопаровоз Ворошиловградского завода
  7. Глава IV ТЕПЛОВОЗЫ С КОМПРЕССОРНОЙ ПЕРЕДАЧЕЙ
    1. 4.1. Общие положения
    2. 4.2. Проекты тепловозов с пневматической и паровой передачами
    3. 4.3. Тепловоз завода Глазго
    4. 4.4. Тепловоз Царлатти
    5. 4.5. Тепловоз Эсслингенского завода
    6. 4.6. Тепловоз Кристиани
    7. 4.7. Проекты тепловозов с газовой передачей
    8. 4.8. Тепловоз завода Schwartzkopff
    9. 4.9. Локомотивы завода Götaverken
  8. Глава V СВОБОДНОПОРШНЕВЫЕ ГЕНЕРАТОРЫ ГАЗА И КОМПРЕССОРЫ
    1. 5.1. Развитие и современное состояние установок со свободнопоршневыми генераторами газа
    2. 5.2. Устройство, принцип действия, основные свойства, особенности конструкции и регулирование СПГГ
    3. 5.3. Проект СПГГ Лонткевича
    4. 5.4. СПГГ зарубежных фирм
    5. 5.5. СПГГ Луганского завода
    6. 5.6. Многоцилиндровый СПГГ
    7. 5.7. СПГГ ООО «ГазоМотор НПФ ЭКИП»
    8. 5.8. Свободнопоршневые дизель-компрессоры
  9. Глава VI ГАЗОТУРБОВОЗЫ СО СВОБОДНОПОРШНЕВЫМИ ГЕНЕРАТОРАМИ ГАЗА
    1. 6.1 Зарубежные газотурбовозы
    2. 6.2. Проекты газотурбовозов МВТУ
    3. 6.3. Газотурбовоз Луганского завода
  10. Глава VII СИЛОВАЯ УСТАНОВКА ТЕПЛОВОЗА С ДВИГАТЕЛЕМ ВНУТРЕННЕГО СГОРАНИЯ НЕПОСРЕДСТВЕННОГО ДЕЙСТВИЯ
    1. 7.1. Транспортный двигатель внутреннего сгорания с автоматическим регулированием крутящего момента
    2. 7.2. Комбинированная силовая установка тепловоза
    3. Вместо заключения
    4. Список использованной литературы

ОТ АВТОРА

Уважаемый читатель!

Перед Вами книга о мало освещаемой в современной технической литературе странице истории тепловозостроения, представляющей почти забытые ныне типы тепловозов, в частности, тепловозы с непосредственным приводом движущих осей от двигателя внутреннего сгорания, которым свойственна простота конструкции и то, что теоретически они имеют самый высокий коэффициент полезного действия на ободе колёс из всех известных тепловых локомотивов. Поэтому конструкторы первых тепловозов не случайно стремились применить для них именно такой привод. Известно множество проектов, выполненных как в России, так и за рубежом, некоторые из которых воплотились в металл. Ряд спроектированных конструкций выглядели вполне работоспособными, однако технология производства первой половины прошлого столетия не позволяла их осуществить. Это, в частности, касается генераторов газа и дизель-компрессоров со свободно движущимися поршнями — оригинальных тепловых машин, которым посвящена отдельная глава. Позднее, уже в 50-х годах ХХ века во Франции и СССР были построены экспериментальные газотурбинные локомотивы со свободнопоршневыми генераторами газа. Эти локомотивы также описаны в данной книге.

В реальности эксплуатационный коэффициент полезного действия тепловозов с непосредственным приводом зачастую оказывался ниже, чем наиболее распространённых и хорошо известных сейчас тепловозов с электрической передачей. Это объясняется тем, что при непосредственном приводе дизель вступает в работу не сразу, а по достижении определённой скорости, развиваемой локомотивом, который до этого момента приводится в движение сжатым воздухом или паром[1]. Время работы тепловоза на этих малоэкономичных источниках энергии зависело от конкретных условий эксплуатации, но так или иначе это снижало коэффициент полезного действия тепловоза, особенно при разгоне паром. Разновидность тепловозов с непосредственным приводом, использующих для разгона пар, обычно выделяется в самостоятельный тип локомотива, известный как теплопаровоз. Основные различия описываемых в этой книге конструкций тепловозов с непосредственным приводом заключаются в способе трогания локомотива с места и его разгона. В основном своём варианте тепловозы с непосредственным приводом разгоняются при помощи сжатого воздуха, для чего на них устанавливается вспомогательный дизель-компрессор.

Вообще сжатый воздух как рабочее тело для привода в движение транспортных средств начал применяться гораздо раньше, чем появились первые тепловозы. Кроме того, на некоторых тепловозах, называемых компрессорными, привод сжатым воздухом — чистым или в смеси с паром или продуктами сгорания двигателя — являлся основным. Поэтому книга была бы неполной без описания первых пневмолокомотивов, а также компрессорных тепловозов.

И хотя большинство тепловозов с непосредственным приводом для трогания и разгона используют сжатый воздух или пар, известны также тепловозы, которые трогаются и разгоняются при помощи гидродинамических аппаратов. В этом случае привод содержит гидравлическое звено, используемое для трогания и разгона, и механическое, которое используется в диапазоне средних и высоких скоростей движения, причём в механической части отсутствует коробка скоростей; таким образом, получается тепловоз с постоянным соединением двигателя и движущих колёсных пар, т. е. с непосредственным приводом. Благодаря использованию гидравлических устройств для разгона, общий коэффициент полезного действия тепловоза, у которого непосредственный привод совмещён в одной конструкции с гидравлическим, может оказаться выше, чем тепловоза с непосредственным приводом, использующего для разгона сжатый воздух или пар. Примером простейшей конструкции такого типа является наличие гидромуфты, располагаемой между фланцем дизеля и отбойным валом тепловоза.

Написать эту книгу побудили научные изыскания, проведённые автором в 2013 — 2014 гг. при разработке двигателя внутреннего сгорания с регулируемым крутящим моментом[2].

Именно тесная взаимосвязь между непосредственным и компрессорным приводом осей навела автора на мысль объединить эти два принципиально разных элемента силовой установки в единый агрегат, получивший название «Транспортный двигатель внутреннего сгорания с автоматическим регулированием крутящего момента». На базе этого двигателя разработана силовая установка, обладающая, по мнению автора, высокой теплотехнической эффективностью, что делает её перспективной для применения на тепловозах.

Название книги «Тепловозы. Вехи непройденного пути» как бы подчёркивает незавершённость того пути, по которому шли создатели чрезвычайно интересных локомотивов, описанных в данной книге, не получивших в своё время распространения на железных дорогах. Возможно, этот путь ещё предстоит пройти.

Чтобы дать читателю возможность получить более полное представление обо всех упомянутых локомотивах, автором предпринята попытка обобщить имеющийся в его распоряжении по этой теме довольно обширный, но разрозненный материал из различных печатных источников[3], многие из которых стали уже библиографической редкостью, дополнив его в конце книги собственными разработками. В этой заключительной части книги автор попытался по-новому взглянуть на проблему создания тепловоза с непосредственным приводом и с этой точки зрения показать возможные перспективы развития локомотивов этого типа.

Кое-что удалось найти в интернете. В большинстве своём это англоязычные сайты, которые автор перевёл на русский язык, чтобы эти материалы можно было поместить в книгу.

При описании конструкций тепловозов и их систем автор старался использовать современную терминологию, но иногда приходилось придерживаться оригинальной терминологии источника, как правило, для обозначения той или иной системы тепловоза так, как их называли сами конструкторы.

 Реже — каким-либо другим двигателем.

 В результате этих работ получено два патента.

 Этим объясняется большой объём книги.

[1] Реже — каким-либо другим двигателем.

[2] В результате этих работ получено два патента.

[3] Этим объясняется большой объём книги.

Написать эту книгу побудили научные изыскания, проведённые автором в 2013 — 2014 гг. при разработке двигателя внутреннего сгорания с регулируемым крутящим моментом.

Чтобы дать читателю возможность получить более полное представление обо всех упомянутых локомотивах, автором предпринята попытка обобщить имеющийся в его распоряжении по этой теме довольно обширный, но разрозненный материал из различных печатных источников, многие из которых стали уже библиографической редкостью, дополнив его в конце книги собственными разработками. В этой заключительной части книги автор попытался по-новому взглянуть на проблему создания тепловоза с непосредственным приводом и с этой точки зрения показать возможные перспективы развития локомотивов этого типа.

В реальности эксплуатационный коэффициент полезного действия тепловозов с непосредственным приводом зачастую оказывался ниже, чем наиболее распространённых и хорошо известных сейчас тепловозов с электрической передачей. Это объясняется тем, что при непосредственном приводе дизель вступает в работу не сразу, а по достижении определённой скорости, развиваемой локомотивом, который до этого момента приводится в движение сжатым воздухом или паром. Время работы тепловоза на этих малоэкономичных источниках энергии зависело от конкретных условий эксплуатации, но так или иначе это снижало коэффициент полезного действия тепловоза, особенно при разгоне паром. Разновидность тепловозов с непосредственным приводом, использующих для разгона пар, обычно выделяется в самостоятельный тип локомотива, известный как теплопаровоз. Основные различия описываемых в этой книге конструкций тепловозов с непосредственным приводом заключаются в способе трогания локомотива с места и его разгона. В основном своём варианте тепловозы с непосредственным приводом разгоняются при помощи сжатого воздуха, для чего на них устанавливается вспомогательный дизель-компрессор.

ВВЕДЕНИЕ

Если проследить более чем вековую историю тепловозостроения, то можно увидеть два направления его развития.

Стремясь к упрощению и удешевлению тепловоза, многие инженеры искали решения в непосредственном действии двигателя внутреннего сгорания на движущие колёса. Проектов тепловозов непосредственного действия и их разновидностей, в которых движущие колёса приводятся во вращение прямо от двигателя внутреннего сгорания или с помощью фрикционных муфт, выполнено большое количество, некоторые из них даже были реализованы в виде опытных машин. Однако в целом это направление распространения не получило, и тепловозостроение пошло по другому пути развития.

Сторонники ­другого направления занимались поиском пригодной для условий локомотивной службы комбинации уже испытанных агрегатов и хорошо известных конструктивных элементов. Инженеры, работавшие в этом направлении, исходили из существующих свойств первичного двигателя внутреннего сгорания и изыскивали возможности применения его для тяги поездов путём использования промежуточных передач — элек­трической, гидравлической, пневматической, зубчатой, смешанной, играющих роль трансформатора частоты вращения и крутящего момента, передаваемого двигателем внутреннего сгорания движущим осям. Наибольшее распространение во всём мире получила электрическая передача. Доля тепловозов с электрической передачей составляет около 80% общего парка дизельных локомотивов. В меньшей степени применяются гидравлическая, гидромеханическая и механическая передачи.

Первые магистральные тепловозы, появившиеся в России, также имели электрическую передачу, позднее к ним добавился тепловоз с механической передачей. Этому пути развития тепловозостроения положили начало русские инженеры — профессора Я. М. Гаккель и Ю. В. Ломоносов.

Чтобы понять, почему до сих пор не удалось создать работоспособный тепловоз с непосредственным приводом движущих осей, полностью отвечающий всем требованиям тяги, следует кратко остановиться на особенностях и вытекающих из них основных свойствах двигателей внутреннего сгорания.

Среди существующих тепловых машин двигатель внутреннего сгорания обладает самым высоким коэффициентом полезного действия (к. п. д.), поскольку при сгорании топлива внутри цилиндра достигается высокая температура в процессе подвода тепла к рабочему телу. При этом сам процесс сопровождается меньшими тепловыми потерями, чем в случае внешнего подвода тепла. Наибольшая тепловая эффективность достигается у двигателя с самовоспламенением от сжатия, называемого дизелем по имени его создателя Рудольфа Дизеля. В дизелях происходит наиболее экономичное сжигание топлива, что делает эти двигатели особо привлекательными для применения на локомотивах. Если в паровозах при всех теплотехнических мероприятиях, которые только можно было осуществить, не удалось поднять к. п. д. выше 9%, то современные дизели работают с к. п. д. более 40%.

Вместе с тем двигатель внутреннего сгорания не может быть приведён в действие при неподвижных поршнях и совершать работу при низких скоростях их перемещения. Для трогания поезда с места и его разгона до скорости, когда двигатель начинает работать самостоятельно, необходим посторонний источник энергии. Это является одной из причин того, что локомотивы с двигателями внутреннего сгорания должны иметь промежуточную передачу между дизелем и колёсными парами, что увеличивает стоимость локомотива и расходы по его содержанию и ремонту.

Другой причиной применения промежуточной передачи является то, что двигатель внутреннего сгорания не обладает достаточно гибкой внешней характеристикой, требующейся машине транспортного назначения. Это происходит потому, что особенности его рабочего процесса, вытекающие из постоянства среднего индикаторного давления во всём скоростном диапазоне, не позволяют изменять в широких пределах момент на валу отбора мощности при изменении частоты вращения вала. Чтобы расширить эти пределы требуется форсировать двигатель, что приводит к его перегрузке. Однако дизель не переносит большой перегрузки, так как в этом случае в рабочих цилиндрах развиваются чрезмерно высокие температуры и давления. Поэтому непосредственное соединение вала двигателя с движущими осями локомотива не обеспечивает регулирование силы тяги в необходимых пределах.

Неудачный опыт с самым первым магистральным дизельным локомотивом с непосредственным приводом — тепловозом Общества Diesel-Klose-Sulzer — заставил представителей этого направления искать пути изменения свойств двигателя внутреннего сгорания и создания цикла, пригодного для локомотива.

Попытки создания тепловоза с непосредственным приводом в России предпринимали В. И. Гриневецкий, А. И. Липец, И. Ф. Ядов, М. И. Пригоровский, Е. Е. Лонткевич, Г. К. Хлебников и ряд других изобретателей и учёных.

Осуществить непосредственную передачу вращающего момента дизеля на оси тепловоза пытались и в дру­гих странах. Однако построенные за границей теп­ловозы также оказались плохо приспособленными к требованиям эксплуатации. У опытных тепловозов этого типа при переходе машин на работу по циклу Дизеля происходили резкие взрывы, не хватало воздуха или пара на разгон и т. д.

У тепловоза с непосредственным приводом, использующим для трогания с места сжатый воздух или пар, степень экономического эффекта по сравнению с тепловозами, имеющими передачу, зависит от скорости, при которой получается устойчивый, надёжный процесс сгорания. Чем меньше эта скорость, тем меньший требуется вспомогательный дизель-компрессор или паровой котёл для разгона поезда, тем больший период времени двигатель тепловоза может работать по дизельному циклу с высоким коэффициентом полезного действия.

Электрическая и другие виды применяемых в настоящее время передач полностью устраняют все трудности пуска в ход и гарантируют в большей или меньшей степени необходимую эластичность тяговой характеристики. Но тепловозы с передачами имеют существенные недостатки, от которых избавлен только тепловоз с непосредственным приводом.

Отрицательные качества тепловозов с передачей заключаются главным образом в необходимости иметь две различные энергетические системы на одном локомотиве с меньшей последующей отдачей мощности на ободе колёс и в более сложном регулировании. Тепловоз с передачей при значительном увеличении веса локомотива требует бóльших расходов на техническое обслуживание, увеличения длительности простоев в цехах для ремонта с одновременным ростом числа заходов на ремонт, необходимости более широкого применения специализированного персонала. Всё это снижает экономическую эффективность локомотива в целом.

Тепловозы с непосредственным приводом лишены этих отрицательных качеств, но такие локомотивы трудно осуществить на практике именно из-за сложности приведения в движение дизеля под нагрузкой и его неспособностью тянуть поезд на низких скоростях и сообщать ему необходимое ускорение.

При электрической передаче повышение веса локомотива выражается примерно в 25%, а первоначальной стоимости — в 33%, при гидравли­ческой передаче — в 10 и 20%, соответственно, при механической передаче — в 12 и 15%.

Совершенно естественно, поэтому, стремление устранить совсем это промежуточное звено и осуществить непосредственный привод, т. е. передавать вращающий момент от двигателя на колёса непо­средственно, подобно тому, как это осуществляется на паровозе.

Всякая передача отнимает у двигателя какую-то долю его мощности, затрачиваемую на трение передаточных частей механизма и на покрытие других потерь.

Электрическая передача, обеспечивающая хорошие тяговые свойства, громоздка, обладает значительным весом, требует расхода дорогих и дефицитных цветных металлов (главным образом меди) и дополнительной затраты мощности. Так, потери мощности от выходного вала дизеля до движущих колёс составляет до 20% номинала из-за потерь в главном генераторе, тяговых электродвигателях и преобразователях, затрат мощности на системы возбуждения и вентиляции электрических машин. По этой причине снижается эксплуатационный к. п. д. тепловоза.

Неизбежный разброс электромеханических характеристик тяговых электродвигателей приводит к повышению вероятности перегрева наиболее нагруженных из них и преждевременному срыву сцепления колёсных пар, приводимых во вращение этими двигателями. Для предотвращения боксования приходится применять специальные противобоксовочные устройства. Таким образом, электрическая передача значительно усложняет конструкцию и увеличивает стоимость тепловоза, а также усложняет его эксплуатацию и ремонт.

Коэффициент полезного действия
электрической передачи тепловоза ТЭ3
[1] .

Ограничение габаритов и массы применяемых тяговых электрических машин при необходимости повышения агрегатной мощности и момента привело к увеличению нагрузки активных элементов тяговых электродвигателей и, как результат, к интенсификации вентиляции с целью обеспечить заданный ресурс.

Интенсификация вентиляции и использование конструкционных материалов, допускающих более высокие нагрузки, неизбежно ведёт к возрастанию затрат энергии на охлаждение при эксплуатации тягового электродвигателя и повышению его цены. С ростом секционной мощности энергетических установок тепловозов эти затраты возрастают с 1% — у тепловозов серий ТЭМ1 и ТЭМ2, до 4,5% и 6%, соответственно, — у тепловозов 2ТЭ116 и ТЭ136.

Анализ паспортных тяговых характеристик тепловозов с электрической передачей показывает, что мощность тепловоза ТЭ3 на ободе колёс составляет 77 ÷ 86% (в среднем 83%) от мощности, реализуемой на валу дизеля. У тепловозов 2ТЭ10 различных модификаций аналогичные показатели составляют, соответственно, 80 ÷ 87 (85) %, а у 2ТЭ116 — 82 ÷ 88 (87) %. Приведённые данные относятся к максимальным позициям контроллера машиниста (16-й у ТЭ3 и 15-й у 2ТЭ10 и 2ТЭ116)[2].

Для сравнения интересно посмотреть данные, полученные из материалов испытаний тепловозов 2ТЭ10Л и 2ТЭ10В. Эти данные, приведённые в виде гистограмм частотных распределений потерь мощности в электрической передаче в реальных условиях работы тепловозов с учётом переменных режимов и переходных процессов в энергетической цепи, являются несколько завышенными, потому что из показанных потерь не выделены затраты мощности на вспомогательные нужды тепловоза.

Нивелируя эти неточности, можно обратить внимание на то, что паспортные и экспериментальные данные не противоречат друг другу. Таким образом, видно, что современные тепловозы с электрической передачей непроизводительно теряют 15 — 20% энергии, вырабатываемой дизелем, и, соответственно, примерно на эту же величину у них должен возрастать расход топлива по сравнению с тепловозами, имеющими непосредственный привод[3].

Коэффициент полезного действия электрической передачи тепловоза 2ТЭ10.
Коэффициент полезного действия электрической передачи тепловоза 2ТЭ116.
Относительные потери мощности дизеля в электропередаче и 
вспомогательном оборудовании тепловоза 2ТЭ10Л.
Относительные потери мощности дизеля в электропередаче и
вспомогательном оборудовании тепловоза 2ТЭ10В.

Гидравлическая передача имеет меньший вес, не требует расхода цветных металлов, однако она обладает более низким коэффициентом полезного действия. Соответственно, здесь в ещё более выраженном виде будут проявляться те потери, которые наблюдаются у тепловозов с электрической передачей. В нашей стране тепловозы с гидропередачей не получили сколько-нибудь заметного распространения. Исключением, пожалуй, являются железные дороги Сахалина, где в силу габаритных ограничений тепловозов более узкой колеи затруднено размещение электродвигателей требуемой мощности. Также тепловозы с гидропередачей нашли применение на промышленном транспорте. Наибольшее распространение тепловозы с гидропередачей получили в Германии, но и там в последнее время наблюдается тенденция перехода на локомотивы с асинхронным электроприводом.

Наименьшие потери имеем в механической передаче (коробка скоростей с редукторно-карданным приводом), но здесь отсутствует возможность непрерывно изменять силу тяги во всём диапазоне её регулирования. Переключения ступеней сопровождаются провалами силы тяги и большими динамическими нагрузками в передаче, поэтому механическая передача неприменима для тепловозов большой мощности. Аналогично, ограниченная только малыми мощностями, передача сцеплением с использованием фрикционной муфты также не подходит для средних и больших мощностей.

Из вышесказанного следует, что проблему тепловоза нельзя считать окончательно решённой применением передач. Правда, многократные попытки решить проблему иным путём до сих пор не привели к успеху, но каждая из этих попыток, обнажая новые и новые противоречия, ближе и ближе ведёт к цели. Появившись в своё время как вынужденная мера, которая была необходима для скорейшего освоения дизельной тяги, тепловозные передачи сыграли и продолжают играть немаловажную роль в развитии тепловозостроения. Но задача создания более простого и дешёвого тепловоза никуда не делась и ждёт своего решения.

Двигатели, пред­назначенные для ло­комотивной службы, должны иметь рабочую характеристи­ку, близкую к характеристике паровозной машины, которая для автономного локомотива является наиболее подходящей. Необходимо, чтобы тяговый двигатель внутреннего сгорания мог в широких пределах изменять среднее индикаторное давление, плавно изменять частоту вращения, имея возможность воспламенять топливо при весьма низкой скорости. Он должен быть простым, надёжным в эксплуатации и дешёвым.

Наличие такого двигателя дало бы возможность построить тепловоз, у которого поршень был бы связан шатуном с ведущими колёсами непосредственно или же через отбойный вал. Несомненно, что тепловоз с таким двигателем наиболее целесообразно и просто разрешит проблему применения его как тяговой единицы на железнодорожном транспорте. Трудности создания такого двигателя состоят не только в видоизмене­нии существующих конструкций двигателей, но, главным образом, в изменении их рабочих процессов.

Опыт показал, что создать тепловоз, имеющий прямую связь дизеля с колёсами, несмотря на всю за­манчивость этой идеи, — задача чрезвычайно трудная, и поэтому такие тепловозы до сих пор не нашли практического применения. Но если бы тепловозы с непосредственным приводом, имеющие требуемые тяговые свойства, были созданы, то значение их трудно было бы переоценить. Победа в этой области тепловозостроения имела бы большое значение. Думается, что сегодня, опираясь на современные технологии, можно было бы избежать ошибок создателей первых тепловозов с непосредственным приводом и по-новому решить проблему создания такого тепловоза.

 Сюда не включены относительные затраты мощности на вспомогательные нужды за исключением системы охлаждения тяговых электрических машин. Последние затраты учитываются потому, что являются неизбежными при электрической передаче и отсутствуют у тепловозов других систем, в том числе и с непосредственным приводом движущих осей. Поэтому можно считать, что эти данные соответствуют к. п. д. электропередачи с учётом затрат мощности на охлаждение тяговых электрических машин.

 ПП, ОП1, ОП2 — ступени ослабления возбуждения тяговых электродвигателей.

 Конечно, при этом предполагается одинаковая экономичность тепловых двигателей тех и других тепловозов.

[1] ПП, ОП1, ОП2 — ступени ослабления возбуждения тяговых электродвигателей.

[2] Сюда не включены относительные затраты мощности на вспомогательные нужды за исключением системы охлаждения тяговых электрических машин. Последние затраты учитываются потому, что являются неизбежными при электрической передаче и отсутствуют у тепловозов других систем, в том числе и с непосредственным приводом движущих осей. Поэтому можно считать, что эти данные соответствуют к. п. д. электропередачи с учётом затрат мощности на охлаждение тяговых электрических машин.

[3] Конечно, при этом предполагается одинаковая экономичность тепловых двигателей тех и других тепловозов.

Коэффициент полезного действия
электрической передачи тепловоза ТЭ3
.

Анализ паспортных тяговых характеристик тепловозов с электрической передачей показывает, что мощность тепловоза ТЭ3 на ободе колёс составляет 77 ÷ 86% (в среднем 83%) от мощности, реализуемой на валу дизеля. У тепловозов 2ТЭ10 различных модификаций аналогичные показатели составляют, соответственно, 80 ÷ 87 (85) %, а у 2ТЭ116 — 82 ÷ 88 (87) %. Приведённые данные относятся к максимальным позициям контроллера машиниста (16-й у ТЭ3 и 15-й у 2ТЭ10 и 2ТЭ116).

Нивелируя эти неточности, можно обратить внимание на то, что паспортные и экспериментальные данные не противоречат друг другу. Таким образом, видно, что современные тепловозы с электрической передачей непроизводительно теряют 15 — 20% энергии, вырабатываемой дизелем, и, соответственно, примерно на эту же величину у них должен возрастать расход топлива по сравнению с тепловозами, имеющими непосредственный привод.

Глава I
ПРЕДШЕСТВЕННИКИ ТЕПЛОВОЗОВ

1.1. Локомотивы на сжатом воздухе

Сжатый воздух используется с XIX века для привода локомотивов, работающих на предприятиях горной промышленности. Помимо этого, в некоторых городах сжатый воздух использовался для привода трамваев, питавшихся от центральной общегородской пневматической распределительной сети. Первые пневматические локомотивы появились всего лишь на 15 — 20 лет позже стефенсоновского паровоза как альтернатива паровой тяге.

Пневмоустановки получили широкое применение там, где дым, искры и пар из куда более эффективной паровой машины были неприемлемы (на городских улицах и внутри угольных шахт) в то время, когда электричество ещё не было распространено в качестве источника энергии для двигателей. По мере развития электроэнергетики локомотивы с двигателями, работающими на сжатом воздухе, были постепенно заменены электрической тягой.

Локомотивы, работающие на сжатом воздухе, приводятся в движение пневмодвигателями. Такой привод называется пневматическим. Эти локомотивы появились намного раньше, чем были выполнены проекты первых тепловозов. Пневмодвигатели имеют один или несколько цилиндров, в которых перемещаются поршни. Пневмодвигатели принципиально по конструкции очень похожи на паровые машины или гидродвигатели. Воздух перед впуском в двигатель целесообразно нагревать для повышения отдачи энергии. Особенно это актуально с учётом того, что расширяющийся в пневмодвигателе воздух охлаждается. У пневмолокомотивов отсутствует собственный генератор энергии, они используют готовую энергию в виде сжатого воздуха, приготавливаемого на зарядных станциях. Вместо сжигания смеси топлива с воздухом в двигателе и последующей передачи энергии поршням от горячих расширяющихся газов, в пневматических локомотивах передача энергии поршням осуществляется от сжатого воздуха, запасённого в баллонах. Баллоны для хранения сжатого воздуха разрабатываются в соответствии с требованиями безопасности для сосудов, работающих под давлением. Принципиальным недостатком является непрямое использование энергии. Сначала энергия используется для сжатия воздуха, а потом от сжатого воздуха передаётся двигателю. Каждое преобразование энергии осуществляется с потерями, что обуславливает более низкий коэффициент полезного действия пневмолокомотивов чем, например, дизельных или, тем более, электротранспорта.

Принцип действия пневматических локомотивов впоследствии был положен в основу компрессорной передачи тепловозов. Поэтому пневмолокомотивы можно с полным правом считать предшественниками компрессорных тепловозов и тепловозов с непосредственным приводом, разгоняющихся сжатым воздухом.

При использовании на локомотивах сжатого воздуха в качестве рабочего тела возникает ряд проблем. Сжатый воздух имеет низкую энергетическую плотность. С учётом возможности нагрева воздуха его энергетическая плотность при давлении 300 ат[1] не превышает 30 кВтч/м3, что сопоставимо с ёмкостью электрохимических свинцовых аккумуляторных батарей. Однако по мере разряжения батарей напряжение на их выходах падает относительно слабо. В то же время, давление на выходе из баллонов будет падать по мере расходования воздуха, если не принять специальных конструктивных мер, например, использовать резервуар с переменным рабочим объёмом. В этом случае по мере расходования воздуха объём будет уменьшаться, а давление оставаться примерно постоянным. Сжатие газа генерирует большое количество тепла, и вся эта энергия теряется при хранении воздуха, когда он остывает. Эти потери могут быть уменьшены, если сжимать воздух в двух или более ступенях, охлаждая его между ступенями, но всё равно потери будут оставаться значительными. С другой стороны, в процессе, использующим сжатый воздух для работы двигателя, главной проблемой является получение работоспособной системы. Когда газ расширяется, он охлаждается, и если запасённый воздух не является совершенно сухим (а это так и есть), в трубопроводе и цилиндрах двигателя влага начнёт замерзать, и двигатель скоро прекратит работу и остановится. Сжатый воздух, используемый в двигателе локомотива, смешивается со смазкой, применяемой для уменьшения сил трения и снижения износа пневмооборудования, что приводит к загрязнению окружающей среды.

Большим преимуществом пневматических локомотивов, правда, редко используемым на практике, является обратимость пневмодвигателя, возможность перевода его в компрессорный режим и, тем самым, осуществление рекуперации энергии торможения, что в энергетическом смысле аналогично применению рекуперативного торможения на электровозах.

1.2. Зарубежные пневмолокомотивы

Пневмолокомотивы Андро и дю Мотай. Первое фактически осуществлённое пневматическое рельсовое транспортное средство было построено М. Антуаном Андро и Тесси дю Мотай (полное имя Киприен-Мари Тесси дю Мотай) в 1839 г. на заводе Chaillot в Париже, Франция, и испытано в 1840 г. Давление в запасающих баллонах составляло 17 ат, а давление двигателя — 3 ат, что предполагает использование редукционного клапана.

В 1844 г. М. Андро построил локомотив 1-1-1 массой 5 т с одним клёпаным воздушным резервуаром, вмещавшим 3 м3 воздуха при давлении 21 ат. Впервые он был испытан в 1844 г. на версальском левобережном треке, проходя обратный путь длиной 3,2 км со скоростью от 27 до 32 км/ч.

Из патента 1841 г. мы узнаём, что Андро и Тесси дю Мотай основались на улице Шаброль, 35 в Париже; эта дорога до сих пор существует и лежит к юго-западу от Гар дю Нор, где заканчивается маршрут тоннельных поездов из Великобритании. Предполагается, что приведённая иллюстрация локомотива Андро относится к этой машине.

Пневмолокомотив Андро. 1844 г. Изображение из Энциклопедии
католиков, Parent-Desbarres, 1845.

Ёмкость резервуара составляла от 8 до 10 м3 при давлении до 20 ат. Похоже, что цилиндры были внутри рам сзади и действовали на среднюю ось. Энциклопедия утверждает, что локомотив был «двойного действия»; это может означать или что цилиндры были двойного действия, или что использовалось компаундное расширение. Вероятно, это было сделано впервые; если компаундное расширение действительно использовалось, то оно было применено на 50 лет раньше Ходжеса и Портера (см. ниже).

Пневматический локомотив Парси. В 1839 г. Артур Парси получил английский патент (№8,093) на локомотив, приводимый в движение сжатым воздухом. После им было получено ещё два английских патента: в 1844 г. и 1854 г. (№88). Он также получил американский патент (№5,205) в 1847 г.

Пневматический локомотив Парси. 1847 г. Рисунок с сайта «The Self Site: Unusual Steam Locomotives».
Резервуар A заполнялся воздухом, «сжатым до такой степени, как это было совместимо с безопасностью», который питал камеру ресивера D, давление в двигателе поддерживалось автоматическим редукционным клапаном C, через который воздух по трубам подавался в шпилевидный вертикальный двигатель двойного действия B. Использование ресивера пониженного давления между основным (запасающим) резервуаром и двигателем вначале было характерно для многих подобных устройств. Парси планировал использовать давление в основном резервуаре от 70 до 140 ат при давлении в двигателе 4,2 ат. Клапан F служил для зарядки воздухом, а G являлся предохранительным клапаном. Двигатель имел два цилиндра, чтобы предотвратить проблемы с мёртвой точкой. Локомотив предназначен для работ на угольных шахтах, где отсутствие дыма и огня было бы большим преимуществом. Изображение взято из американского патента.
Современная иллюстрация локомотива на сжатом воздухе
Парси. Рисунок с сайта «The Self Site: Unusual Steam Locomotives».
Локомотив является точным представлением модели, показанной ниже. Йоркский железнодорожный музей уверенно заявляет, что полномасштабная версия не была построена. Эта сцена является воображаемой, и, конечно, не показывает работу в угольной шахте. Это изображение появилось в « Иллюстрированных лондонских новостях» за 28 февраля 1846 г., стр. 140, во главе статьи, озаглавленной «Пневматический двигатель Парси», в которой было заявлено про утверждение Парси, что максимальная скорость может варьироваться от 20 до 100 миль в час (32 ÷ 160 км/ч) за счёт изменения давления в ресивере, и что заряда воздуха будет хватать локомотиву на протяжении 50 миль (80 км) при движении 40-тонного поезда. Зарядные станции должны были устанавливаться каждые 30 миль (около 50 км).
Модель пневмолокомотива Парси. Эта модель находится
в Йоркском железнодорожном музее в Англии. Фото с сайта «The Self Site: Unusual Steam Locomotives».

По словам сотрудников музея, модель была построена в 1845 г. для демонстрации патентов Парси 1839 и 1844 гг., а позднее была представлена директорам Большой западной железной дороги покойным сэром Джеймсом Кейрдом Бт. Он был судовладельцем, поэтому непонятно, как она к нему попала. Маленький зелёный цилиндр непосредственно над центральной осью является одним из паровых цилиндров. Большой зелёный цилиндр справа от него — приёмник воздуха после того, как он снизился до рабочего давления двигателя. Поверх него находится маховик и винт, который устанавливал давление в редукционном клапане. Между колёсами нет спаривания, и оно невозможно, поскольку колёса имеют разные диаметры, поэтому ведущей является только средняя ось. Это, вероятно, приводило бы к проскальзыванию колёс, если бы была построена полноразмерная версия.
Двигатель пневматического локомотива Парси. 1846 г. Рисунок с сайта «The Self Site: Unusual Steam Locomotives».
Этот рисунок взят из вышеприведённого художественного цикла иллюстрированных лондонских новостей. Несмотря на плохое качество он достаточно информативен. Два запасающих резервуара А, по-видимому, постоянно соединены друг с другом через трубу OCK. Ресивер находится на E, а редукционный клапан на G. Два цилиндра двигателя находятся на K.

Американский патент содержит вызывающий сильное недоумение второй раздел, согласно которому пневмолокомотив снабжён средствами для подачи воздуха обратно в ресивер после его использования в двигателе. Парси говорил: «Я предлагаю при некоторых обстоятельствах вместо того, чтобы позволять его выпускать[2], как пар двигателя высокого давления, возвращать сжатый воздух в ресивер А после того, как он воздействует на поршень». Видимо, он имел в виду резервуар A (то есть основной резервуар-хранилище), так как ресивер помечен буквой D, что означает, что давление использованного воздуха должно быть поднято до 70 ат или около того; эта путаница с терминами подрывает доверие к мистеру Парси. А что значит «некоторые обстоятельства»?

Теперь, если эта накачка относится к рекуперативному торможению, это было бы впечатляюще; но это не так, и это вызывает опасение, что предполагается какой-то вечный двигатель. Фактически Парси предполагал, что накачка может производиться вручную (что совершенно непрактично), но он предпочитает «использовать небольшой паровой двигатель» для выполнения этой задачи. Поэтому в простой пневматический локомотив теперь добавились паровой котёл, резервуары для воды, хранилище для угля и так далее. Это неразумно и показывает, что мистер Парси был не очень практичным человеком.

В 1846 году модель Парси была выставлена в офисе компании по производству сжатого воздуха Parsey, №5 Pall Mall East, где её видел Уильям Уильямс с Риджент-сквер в Лондоне. Он не был впечатлён. Он чувствовал, что «… высокая похвала и покровительство, которые были возложены на изобретение» были незаслуженными, поскольку упускались из виду потери мощности в редукционном клапане. Он согласился с тем, что редукционный клапан забирал небольшое количество воздуха при высоком давлении и давал больший объём при более низком давлении, но убедил себя, что есть скрытые потери, которые приведут к уменьшению радиуса действия локомотива до одной или двух миль. Мысли Уильямса были опубликованы в журнале «Mechanics Magazine», т. 44, стр. 200, сб. 14 марта 1846 г., №1179. Другим критиком был некто «A W», который считал предложение Парси чем-то вроде «пузыря», то есть весьма умозрительным и, возможно, неправильным. Похоже, он ещё меньше вникает в ситуацию, чем мистер Уильямс, полагая, что падение давления в редукционном клапане представляет собой мощность, которая будет полностью потеряна. Он заключает: «Я не могу не добавить, что 1000 фунтов на квадратный дюйм — опасное давление для такого применения. Проектировщики утверждают, что воздух обладает всей экспансивной мощностью пара; это совершенно верно, но также верно и то, что он одинаково опасен». Это кажется справедливым комментарием, если Парси намеревался использовать медные сосуды при 70 ат. На стр. 221 этого номера журнала «Mechanics Magazine» некий ещё менее осведомлённый «J M» ошибочно написал о потерях в редукторе. Ни один из корреспондентов не упомянул о вполне реальном источнике неэффективности всего процесса — потерях при сжатии воздуха, в первую очередь.

Пневматический локомотив, использовавшийся в
Сен-Готардском тоннеле. 1876 г.

Это первое широкое применение локомотивов на сжатом воздухе для перевозок. На этой иллюстрации изображён локомотив типа 0―2―0. Преимущество его использования состояло также и в том, что холодный воздух при выхлопе способствовал вентиляции тоннеля. Масса локомотива приблизительно 7 т. Источник: журнал «Popular Science Monthly», т. 10, 1877.

Пневматические локомотивы для Сен-Готардского тоннеля. Сен-Готардский железнодорожный тоннель в Лепонтинских Альпах был построен в 1871 — 1881 гг. Его длина 15 км, и через него проходит самый высокий участок Готардской железной дороги в Швейцарии, соединяя Гёшенен с Айроло. Это первый тоннель, который пересёк перевал Сен-Готард. Тоннель двухпутный; ширина колеи нормальная европейская.

Пневматический локомотив №6 Сен-Готардского тоннеля
с прицепленным сзади большим дополнительным резервуаром для
хранения сжатого воздуха, установленным на двух двухосных тележках. 1875 г. Фото с сайта «The Self Site: Unusual Steam Locomotives».

На фронтальной части локомотива виден фонарь. «Воздушный» тендер потребовался, чтобы иметь достаточный объём для хранения воздуха в связи с его низким давлением.

При строительстве тоннеля столкнулись с трудностями при удалении породы из длинных штолен. Паровозы не могли использоваться из-за сильно ограниченной вентиляции. Использование лошадей также исключалось из-за их высокой цены и большого потребного количества. Поэтому был проведён первый эксперимент с использованием тяги на сжатом воздухе. Использовалось два обычных паровоза, по одному с каждой стороны тоннеля, но вместо воды котлы были заполнены сжатым воздухом давлением 4 ат. Результаты оказались обнадёживающими, и для этой цели в 1875 г. компанией Schneider-Creusot во Франции были специально построены локомотивы, предназначенные для работы на сжатом воздухе.

Редукционный клапан Рибура.
Первоначально воздух подавался прямо в цилиндры с ограничением степени наполнения путём изменения отсечки. Это оказалось неудовлетворительным, и М. Рибур, инженер, работавший на строительстве Сен-Готардского тоннеля, изобрёл этот клапан для снижения давления. Воздух из основного бака входит в патрубок A. Когда давление, действующее на поршень N при выходе из патрубка D, превышает силу, установленную при закручивании пружины вниз, клапан M перемещается влево, закрывая отверстия m и уменьшая воздушный поток. Из патрубка D воздух проходит в малый резервуар, который гасит колебания, создающиеся выталкиваемым из цилиндров воздухом. По-видимому, имелся также своего рода дроссельный клапан между малым резервуаром и цилиндрами; это до сих пор не подтверждено, но есть нечто, похожее на рукоятку регулятора, находящееся в задней части бака. Редукционный клапан Рибура был важным шагом вперёд, но подобные устройства, скорее всего, применялись ранее Андро и дю Мотай, бароном фон Ратленом и Артуром Парси, если не другими. Источник: журнал «Popular Science Monthly», т. 10, 1877.

Рабочее давление составляло 7,35 ат, что было низким по сравнению с более поздними машинами и давлением в котле паровозов того времени; это, вероятно, было не случайно, поскольку при эксперименте с машинами, которые могут взорваться, естественно было начать с давления, которое считалось безопасным. Следует отметить, что воздушный ресивер имеет больший диаметр, по-видимому, более тонкие пластины и меньшее количество заклёпок, чем более поздние машины высокого давления.

Пневмолокомотивы Бомонта. Подполковник Фредерик Бомонт был назначен для запуска железнодорожной сети в Королевском Арсенале в 1873 г. К 1876 г. он начал проявлять интерес к пневматическим локомотивам как к безопасному способу работы в местах, где хранилось большое количество взрывчатых веществ. К 1877 г. уже работал экспериментальный 18-дюймовый локомотив; это была очень маленькая машина с шестнадцатью основными воздушными резервуарами и четырьмя в качестве запасных.

Королевский Арсенал в то время производил торпеды Уайтхеда по лицензии. Они работали на сжатом воздухе, и в арсенале было компрессорное оборудование, способное заряжать резервуары до 70 ат.

В статье в журнале «Society of Arts Journal» от 18 марта 1881 г. Бомонт сказал: «Самые ранние попытки были ограничены сжатием воздуха при сравнительно низком давлении, скажем, 200 фунтов на квадратный дюйм». Это давление (13,6 ат) было низким по более поздним стандартам, но всё же вдвое больше, чем использовалось в тоннеле Сен-Готард. Бомонт сказал, что это давало ограниченную выходную мощность, при этом всё ещё были проблемы с замерзанием цилиндров двигателя.

Пневмолокомотив Бомонта. 1880 г. Чертёж к патенту США №232438 от 21 сентября 1880 г. С сайта «The Self Site: Unusual Steam Locomotives».
На этом чертеже показан единственный воздушный резервуар и наклонные цилиндры. Прямоугольное устройство в левом нижнем углу — это небольшой паровой котел с дымоходом, который снабжал паровые рубашки на цилиндрах, чтобы предотвратить их обледенение. Это явно нежелательное осложнение, но Бомонт счёл его необходимым. Патент определил четыре цилиндра, один высокого давления и один низкого давления на каждой стороне рамы, для работы по принципу компаунд.

25 июля 1879 г. был размещён заказ у Мэннинга Уордла для локомотива на сжатом воздухе стандартной колеи с давлением в запасающих резервуарах 70 ат. Его первое публичное испытание состоялось 6 мая 1880 года, когда он успешно прошёл на трассе SER между Дартфордом и Арсеналом Вулиджа. Детали этого локомотива немногочисленны, но, согласно «Dartford Chronicle», двигатель имел шесть цилиндров, снабжавшихся воздухом из «расширительной коробки», которая, предположительно, снижала давление хранения 70 ат до давления двигателя порядка 14 ат. Как эти цилиндры были расположены, и был ли редукторный привод к осям, неизвестно. Но мы знаем, что ход поршня составлял 30 см, и было шесть спаренных колёс диаметром 914 мм. Локомотив известен как Manning Wardle No 761.

Пневмолокомотив Бомонта. 1880 г. Чертёж к патенту США №232438 от 21 сентября 1880 г. С сайта «The Self Site: Unusual Steam Locomotives».
Это фронтальная часть локомотива. На каждой стороне рамы имеется один цилиндр E высокого давления, и один цилиндр F низкого давления, работающие по принципу компаунд. Впускные клапаны обеспечивали переменную отсечку, также имелись средства для работы двигателя в простом режиме (без отсечки) для большей тяги при трогании. Элементы L и L являются ножными педалями для управления тормозами.

Нью-Йоркский пневмолокомотив. Построен в 1882 г. На локомотиве размещено четыре стальных цилиндрических баллона диаметром 91 см и объёмом 13 м3, в которых запас сжатого воздуха находился под давлением 42 ат.

Нью-Йоркский пневмолокомотив. Иллюстрация из журнала «La Nature». 1882 г.
Чертёж к американскому патенту №868,560 выданному
Ходжесу на подогреватель окружающим воздухом в октябре 1907 г.
Рисунок с сайта «The Self Site: Unusual Steam Locomotives».

Воздух из основного бака 1 проходит во вспомогательный резервуар 2 через редукционный клапан и затем через трубу 21 к цилиндру высокого давления 3. Холодный отработанный воздух от него идёт через трубу 31 к межнагревателю[3] 5. Там он нагревается окружающим воздухом и затем идёт через трубу 51 к цилиндру низкого давления 4. Холодный выхлоп от него передаётся обратно через трубу 41 к межнагревателю, где проходит через эжектор 54, чтобы увлечь окружающий воздух через межнагреватель.
Чертёж к американскому патенту №868,560 выданному
Ходжесу на подогреватель атмосферным воздухом в 1907 г.
Рисунок с сайта «The Self Site: Unusual Steam Locomotives».

1— основной воздушный бак; 2 — вспомогательный резервуар; 3 — цилиндр высокого давления; 4 — цилиндр низкого давления; 5 — межнагреватель; 54 — эжектор. В практических проектах рожок эжектора был показан по диагонали вверх, по-видимому, чтобы не поднимать пыль с насыпи железной дороги. Патент был продан локомотивной компании Г. К. Портера. Она построила первую систему с двукратным расширением в 1908 г.
Пневмолокомотив Портера с двукратным расширением.
1912 г. Фото с сайта «The Self Site: Unusual Steam Locomotives».

На этой фотографии хорошо видны трубопроводы. Подогреватель расположен вдоль резервуара со сжатым воздухом; окружающий воздух входит через отверстия в ближнем конце. Рожок эжектора виден в дальнем конце. Эти три трубы устроены как показано на схеме выше. В задней части резервуара два манометра, больший выполнен с клапаном отключения. Маленький рычаг управлял регулятором и большим рычагом позади работавшего тормоза. Этот локомотив первоначально использовался в угольной шахте Кэнмора в Альберте.
Пневмолокомотив Портера с двигателем двукратного
расширения (компаунд) с промежуточным подогревателем
окружающим воздухом, расположенным между цилиндрами высокого и низкого давления. Фото из Технической энциклопедии (Cyclopedia of Engineering), т. 6, Американское Техническое Общество, Чикаго, 1910.

Видны выходной диффузор эжектора, всасывающего окружающий воздух в подогреватель, и торец небольшого вспомогательного резервуара. Подогреватель представляет собой цилиндр с надписью «Susquehanna Coal Co».
Работа пневмолокомотива Портера двукратного расширения. 1914 г.
Рисунок с сайта «The Self Site: Unusual Steam Locomotives».

Воздух хранится при высоком давлении в основном воздушном баке и понижается до 17 ат редукционным клапаном, после чего поступает во вспомогательный резервуар, который намного меньше, чем основной бак; его цель состоит в том, чтобы сгладить колебания потока воздуха, вызванного неустойчивым впуском через клапан регулятора в цилиндр высокого давления, в котором воздух расширяется. Вспомогательный резервуар имеет форму длинной трубы, а не компактного бака, потому что при малом диаметре напряжение в металле обруча низкое, длина выбирается соответствующая. Холодный выхлоп от цилиндра высокого давления проходит через подогреватель (названный в схеме межнагревателем) и омывает трубы, через которые втягивается атмосферный воздух; отработанный в цилиндре высокого давления воздух нагревается, увеличивается его объём и повышается эффективность двигателя. Нагретый воздух поступает от подогревателя к цилиндру низкого давления, где он расширяется снова и затем проходит через струю эжектора, которая втягивает наружный воздух через подогреватель.
Чертёж шахтного локомотива троекратного расширения
с промежуточным подогревом окружающим воздухом, с сайта «The Self Site: Unusual Steam Locomotives».

Два промежуточных подогревателя связаны с эжектором, действующим от выхлопа низкого давления. Цилиндры среднего и высокого давления объединены в тандем. Давление в трёх связанных баллонах 150 ат, во вспомогательном резервуаре 25 — 30 ат.
Пневмолокомотив Портера №104 с двигателем двукратного расширения с промежуточным подогревом окружающим воздухом. 1910 г.
Фото с сайта «The Self Site: Unusual Steam Locomotives».

Длинный тонкий цилиндр, который виден перед основным резервуаром, является ёмкостью для воздуха с рабочим давлением 17 ат, которое было редуцировано из давления в основном баллоне 50 ат. Клапан дросселя спереди связан с ручкой, которой управляет машинист со своего места. Также видны регулятор давления, тормозной рычаг, который прижимает тормозные колодки к стальным колёсам, песочница с пневматическим управлением для предотвращения боксования и будка машиниста, которая должна находиться слева — там, где видны рычаги управления.

Воздух проходил через вертикальный подогреватель, нагреваясь до 90°C, и направлялся в цилиндры двигателя через дроссель и редукционный клапан, разработанный для поддержания давления в цилиндрах на уровне 8 — 9 ат. Для того, чтобы подогреватель оставался горячим, по-видимому, сжигался уголь. На локомотиве установлен клапанный механизм Мейера. Возможно применение рекуперативного торможения, когда при замедлении двигатель работает как компрессор, проталкивая воздух обратно в резервуары. Радиус действия порядка 13 км.

Пневматический локомотив Хоэдли — Найта. Джозеф Хоэдли и Уолтер Найт были первыми среди тех, кто применил пневматический двигатель компаунд двукратного расширения. Это должно было напрямую повысить эффективность, как это имело место для паровых машин компаунд, потому что давало возможность подогревать воздух между цилиндрами высокого и низкого давления, а также решало проблемы обледенения.

Патенты Хоэдли-Найта предполагали, что для нагрева воздуха перед цилиндром высокого давления, а также подогрева его между цилиндрами высокого и низкого давления используется горячая вода. Система опробовалась в Нью-Йорке с 1894 по 1899 г., но особого успеха не имела.

Пневматические локомотивы компаунд Ходжеса и Портера. Пневматические локомотивы использовались в угольных шахтах, где из-за опасности взрыва горючих газов нельзя применять огонь, а также в пищевой промышленности и на текстильных фабриках, где дым и копоть могли испортить продукцию.

Чарльз Б. Ходжес изобрёл двигатель двукратного расширения, использующий подогреватель между цилиндрами высокого и низкого давления, чтобы подогреть частично расширенный сжатый воздух. Этот воздух пропускался через теплообменник, в котором он нагревался окружающим воздухом, всасываемым эжектором с помощью отработанного воздуха. Аналогичные эжекторы, действующие на отработанном паре, широко применялись для создания вакуума, используемого в тормозных системах паровозов. Благодаря изобретению Ходжеса отпадала необходимость в применении нагревателей, работающих за счёт сжигания некоторого количества кокса, и при этом не добавлялось никаких новых движущихся частей. Воздух был единственным используемым рабочим телом. Была достигнута существенная экономия, доходящая до 60%.

Пневмолокомотив Портера, разработанный для работы на поверхности, о чём свидетельствует его большая будка. Дата неизвестна.
Фото с сайта «The Self Site: Unusual Steam Locomotives».
На будке сбоку написано «ВМС США». Этот рисунок является довольно загадочным. Локомотив на сжатом воздухе имело бы смысл использовать в арсенале ВМФ по соображениям безопасности, но подъёмный кран с другой стороны состава похож на паровой, с выступающей из крыши трубой.

В 1890 г. компания Генри Кирке Портера построила свой первый пневматический локомотив для угольной шахты в штате Пенсильвания. Воздух, используемый вместо пара для приведения в действие поршней, запасался в двух резервуарах. Это позволило использовать локомотив внутри шахт без дыма от горящего угля, а также устраняло опасность, создаваемую паром высокого давления. Портер построил более 400 пневмолокомотивов для использования в шахтах, на заводах и уличных железных дорогах Нью-Орлеана. Строились пневмолокомотивы также другими фирмами, но к 1910 г. компания Портера владела 90% рынка. Компания H K Porter Company в Питтсбурге купила права на американские патенты, полученные Ч. Ходжесом, и в период 1896 — 1930 гг. продала сотни локомотивов для работы на угольных шахтах в восточной части Северной Америки. Пневмолокомотивы широко использовались в газовых шахтах, где постоянно существовала опасность взрыва. Вентиляция шахты усиливалась воздухом, остывающим при расширении в цилиндрах локомотива.

Как правило, локомотивы компании Портера имели баллоны с запасом воздуха давлением 50 — 80 ат, которое редуцировалось до 7 — 10 ат при поступлении в цилиндры. Воздух сжимался в многоступенчатых компрессорах и распределялся по трубам на зарядные станции, расположенные вдоль маршрутов осуществления перевозок. Портер утверждал, что операция заправки может быть легко завершена за 1,5 мин., при этом воздушный клапан открыт только в течение 40-50 с. Воздушные резервуары были испытаны давлением, на 30% превышающим их рабочее давление.

Известен вариант пневматического локомотива троекратного расширения компании Портера по патенту Ходжеса. Запас сжатого воздуха хранился при давлении 150 ат, которое значительно выше обычно используемого. Можно было бы предположить, что троекратное расширение необходимо для нормальной эксплуатации системы со столь высоким давлением. Но, во-первых, это давление уменьшалось до 25 — 30 ат с помощью редукционного клапана и, во-вторых, дополнительно снижалось перед цилиндром высокого давления, который имел предохранительный клапан на 15 ат. Давление в цилиндре среднего давления неизвестно, а цилиндр низкого давления имел предохранительный клапан на 5 ат. Все известные ссылки на построенные пневмолокомотивы Портера указывают, что они были двукратного расширения, и поэтому в настоящее время не ясно, использовалось ли в действительности троекратное расширение на практике. Скорее всего, этот проект реализован не был.

Давление 150 ат — чрезвычайно высокое, учитывая, что у паровозов оно редко превышало 17 ат; вероятно поэтому локомотив имел три ёмкости для хранения запаса сжатого воздуха как более экономичный способ держать такое высокое давление. Можно только гадать о безопасности. Конечно, не было ни огня, ни накипи — факторов, вызывающих эрозию металла, но, несмотря на это, страшно представить, что было бы, если хотя бы один из баллонов взорвался. Хотя каких-либо упоминаний о подобных случаях не найдено. Было весьма важно проверять внутреннюю часть ёмкости для хранения запаса сжатого воздуха на предмет коррозии, вызываемой капельной влагой; следует обратить внимание, что все резервуары поэтому имеют инспекционный люк на одном конце.

У другого пневмолокомотива компании Портера, №104, резервуар с запасом сжатого воздуха имел давление 50 ат, а двигатель рассчитан на 17 ат. Подогреватель находился на противоположной стороне резервуара, конус выхлопного диффузора эжектора виден в правом верхнем углу над люком баллона.

Обращает на себя внимание большое количество очень крупных заклёпок, требуемых для скрепления резервуара с запасом сжатого воздуха, по сравнению с паровозами, которые работали на гораздо более низком давлении. Резервуар с рабочим давлением двигателя выполнен в виде длинного тонкого цилиндра, а не более компактного бака. Скорее всего, это сделано потому, что длинный цилиндр удобно выполнить из стальной трубы стандартной длины, в то время как короткий бак будет испытывать гораздо большее усилие от стягивающего обруча и необходимо будет применять тяжёлые заклёпки, как для основного резервуара. Длинный цилиндр также имеет бóльшую площадь поверхности для поглощения тепла из окружающей среды, которая нужна для нагрева воздуха после его охлаждения при расширении.

Ещё один сохранившийся пневмолокомотив Портера. Дата неизвестна.
Фото из коллекции Duane Overholser of Sheridan, OR.

Этот локомотив находится в детском парке «Storybook Island» в Рапид-Сити, Южная Дакота. Отсутствуют признаки оборудования двукратного расширения. Здесь также много очень больших заклёпок. Похоже, что отсутствуют некоторые детали и приспособления, и покрашен локомотив не очень хорошо.

Локомотив №104 по времени относится к 1910 г. Он использовался в одной из угольных шахт в Кэнморе, Альберта, и демонстрируется в музее в Сандоне, Британская Колумбия, Канада. H K Porter Company отмечала, что подогрев воздуха перед подачей во вспомогательный резервуар повышал экономичность локомотива на 35 — 50% («Light Locomotives» by H.K. Porter, 1900).

Пневматический локомотив Портера №27 в Золотом руднике Хамстэйк, Южная Дакота. Дата неизвестна.
Фото с сайта «RailroadPix.Com». Автор Майк Декер.

Есть ещё пневмолокомотив, работавший в шахте Хамстэйк. У него два резервуара с запасом сжатого воздуха давлением 70 ат расположены рядом, скорее всего потому, что при этом уменьшаются напряжения в металле от обруча и поэтому изготовление менее затратное. Выходной диффузор подогревателя с капюшоном над ним расположен в передней части локомотива. Подогреватель установлен между двух резервуаров с запасом сжатого воздуха ниже них. Даже несмотря на то, что представляется более реальным использование двукратного расширения воздуха вместо троекратного, непонятно, почему два видимых цилиндра тандем имеют одинаковый диаметр; возможно, это — сторона низкого давления, и тандемные цилиндры использовались, чтобы увеличить общую площадь поршней, вписавшись в габарит.

Сохраненный локомотив Портера. 1928 г.
Фото с сайта «The Self Site: Unusual Steam Locomotives».

Это сохранившийся образец более поздней разработки Портера. Был куплен в 1928 г. и оставался на службе до 1961 г. в шахте Хамстэйк №1A. Давление сжатого воздуха, запасаемого в резервуаре объёмом 4 м3, составляло 70 ат. Масса 12,2 т, длина 7 м, ширина 1,6 м, высота 2,1 м. Выставлен для обозрения в шахте Хамстэйк в Южной Дакоте.

Пневматический локомотив Харди. Локомотив предназначался для работы на надземной Манхэттенской железной дороге в Нью-Йорке, где отсутствие сажи и запаха дыма являлось бы большим преимуществом. Давление в баллонах составляло 140 ат. Вот что писал об этом локомотиве журнал «Street Railway Journal» в мае 1897 г.:

«На сопроводительной гравюре показан новый локомотив сжатого воздуха, недавно построенный американской компанией Air Power Company для Манхэттенской надземной железнодорожной компании в Нью-Йорке. Локомотив будет сдан в эксплуатацию в течение нескольких дней в подразделение Шестой авеню этой компании и будет курсировать между Пятьдесят восьмой улицей и Ректор-Стрит. Колёса имеют 42 дюйма в диаметре; размеры цилиндра 13 дюймов в диаметре на 20 дюймов хода, и зарядный резервуар имеет вместимость 175 куб. футов. Это, по оценкам, позволит локомотиву совершать поездку туда и обратно между Ректор-Стрит и Пятьдесят восьмой улицей с 20-процентным запасом. Резервуар состоит из труб Маннесмана диаметром 9 дюймов, и имеющих различные длины, от 14 футов до 20 футов 6 дюймов. Толщина труб 9 дюймов. Трубы прокатаны из твёрдых слитков в соответствии с регулярным процессом Маннесмана».

«Воздух хранится в резервуаре на 2000 фунтов давления. Он используется в цилиндре на 200 фунтов давления с отсечкой от 10% хода до 5% хода. При прохождении из резервуара в цилиндр он протекает через обычный подогреватель с горячей водой и поступает в цилиндр при температуре от 200 до 300 градусов. Вода поддерживается нагретой с помощью небольшого угольного огня. Но топлива для его поддержания требуется немного, что становится понятным, когда говорится, что на локомотиве размещается только обычный бункер с углём. Новой особенностью локомотива, как будет видно, является расположение цилиндра. Он находится непосредственно под кабиной, позволяя иметь короткий трубопровод для нагретого воздуха. Клапанный механизм является чрезвычайно простым, что можно увидеть на гравюре под кабиной. Он управляется колесом, которое можно увидеть через окно кабины. Масса полностью экипированного локомотива составляет 47000 фунтов. Зарядная станция будет расположена на Гринвич-стрит,100».

Пневмолокомотив Портера с тремя баллонами. Этот локомотив-гигант типа 0―2―0 был построен для компании New Orleans Sewerage & Water Board в 1915 г. Он сохранён, но его текущее местоположение неизвестно. Фото с сайта «The Self Site: Unusual Steam Locomotives».
Обращает на себя внимание большой вертикальный выхлопной рожок подогревателя. Также виден ящик, установленный на верхнем баке, похожий на бункер для песка, с целью улучшения сцепления. Перед будкой машиниста виден второй такой же.
Пневмолокомотив Портера с тремя баллонами. Дата неизвестна.
Фото с сайта «The Self Site: Unusual Steam Locomotives».

Эта фотография показывает тот же самый локомотив, но в другом месте. Обращает на себя внимание то, что ближний резервуар короче остальных, чтобы увеличить пространство в кабине машиниста. Возможно, маленький цилиндр, находящийся между резервуарами, является вспомогательным резервуаром для воздуха, имеющего рабочее давление[4].
Пневмолокомотив Портера №98.
Его технические данные не приводятся.
Фото из Технической энциклопедии (Cyclopedia of Engineering), т. 4, Американское Техническое Общество, Чикаго, 1910.
Локомотив Портера для компании H. C. Frick Coke Co. Дата неизвестна.
Фото с сайта «The Self Site: Unusual Steam Locomotives».

Он похож на локомотив для шахты Хамстэйк. Имеются два цилиндра тандем одинакового диаметра. Выпускное отверстие рожка подогревателя видно в передней части локомотива между двумя резервуарами. Х. К. Фрик покупал пневматические локомотивы также у компании Baldwin.
Пневмолокомотив Портера класса B-P-O. 1914 г.
Этот локомотив компаунд мог быть в четырёх вариантах, названных PEBLOW, PEBMUX, PEBNAZ и PEBREC, которые являются словами телеграфного кода. Каждая версия могла быть оснащена воздушными баками различной вместимости. Давление зарядки для каждого варианта составляло 50 — 80 ат. Есть также упоминание о вспомогательном резервуаре с давлением 17 ат; он был помещён между редукционным клапаном и регулятором, чтобы стабилизировать поток воздуха. Его не видно на этой фотографии. Подогреватель со своим диффузором эжектора, который виден в левом верхнем углу указывающим вверх, расположен на воздушном баке сбоку от него.[5]
Пневмолокомотив Портера класса B-PP-O. 1914 г.
Этот локомотив компаунд изготавливался в четырёх размерах, названных PECRAB, PECSEC, PECTED и PECVOF. Все они работали при давлении 50 — 80 ат в двух основных баках, расположенных рядом. Два тандемных цилиндра находятся на стороне низкого давления, видны внизу справа. Один цилиндр при той же самой поршневой площади, по-видимому, чрезмерно увеличил бы общую ширину локомотива.
Пневмолокомотив Портера класса C-PP. 1914 г.
Это версия с тремя осями локомотива B-PP-O. Здесь виден только один бак, а за ним расположен второй. Зарядное давление составляло от 50 до 80 ат. Во вспомогательном резервуаре давление поддерживалось на уровне 17 ат.
Пневмолокомотив Портера класса B-PPP и B-PP. 1914 г.
Этот тип локомотива уже был показан выше; построен для New Orleans Sewerage & Water Board в 1915 г. Так как он не предназначался для шахт, его общая ширина не так важна; таким образом, единственный большой цилиндр мог находиться на стороне низкого давления. Большой рожок эжектора виден между двумя нижними баллонами. Труба между верхним и нижними главными баллонами могла быть вспомогательным резервуаром, хотя это сомнительно, учитывая её небольшой размер. Зарядное давление составляло 50 — 80 ат, во вспомогательном резервуаре — 17 ат.
Пневмолокомотив Портера класса B-P-T. 1914 г.
Из-за ограничений по высоте и ширине большой объём воздуха мог быть запасён на локомотиве реальной длины (для увеличения пробега без подзарядки) в прицепляемом тендере, несущим второй воздушный баллон. При этом вес распределялся на четыре оси, а не на две. Эта идея уже использовалась в некоторых локомотивах Сен-Готардского тоннеля в 1875 г.
Пневмолокомотив Портера класса B-PP-T. 1914 г.
У этого шахтного локомотива были внутренние цилиндры; объединение с тендером могло встретить серьёзные ограничения по ширине.
Пневмолокомотив Портера класса C-5Ps-O. 1914 г.
Локомотив имел четыре воздушных резервуара, два наверху и два пониже. Труба подогревателя с рожком эжектора находилась сбоку и связывала основание и два резервуара, которые видны позади неё. Рабочее давление этого локомотива было от 120 до 155 ат. Резервуары сделаны из твёрдой стали, без заклёпок, что делало их более прочными и надёжными. У них также меньший диаметр, чтобы снизить напряжение в металле обруча. Доступность безопасных резервуаров, работающих при высоком давлении, привела к их использованию на других локомотивах, таких как Харди, симплонские локомотивы и современные пневмолокомотивы.
Пневматический локомотив Харди. 1897 г.
Фото с сайта «The Self Site: Unusual Steam Locomotives».

То, что выглядит как котёл, всего лишь обшивка, закрывающая батарею баллонов со сжатым воздухом. Бак для горячей воды, нагреваемый углём, использовался для предварительного нагрева запаса сжатого воздуха перед использованием. Дымоход виден на левой стороне кабины. На пластине, прикреплённой к обшивке резервуаров, написано «Rector St».

Пневматический локомотив Диксона. Построен в 1899 г. Давление в резервуаре с запасом сжатого воздуха 42 ат, рабочее давление 10,5 ат. Объем бака 4,8 м3, масса 16 т.

Разница между давлением в резервуаре и рабочим давлением указывает на то, что между резервуаром и цилиндрами двигателя стоял редукционный клапан. Давление 42 ат является гораздо более высоким, чем обычно используется в паровых котлах, где оно редко превышает 17 ат. Вот почему резервуар этого локомотива, в отличие от парового котла, обит очень большими заклёпками. Это характерно для пневматических локомотивов.

Локомотив Харди в частично собранном виде.
Фото с сайта «The Self Site: Unusual Steam Locomotives».
Показано, как баллоны со сжатым воздухом скомпонованы вместе. Видно, что ведущая ось сильно перегружена. Кажется маловероятным, что вес деревянной будки мог бы сбалансировать вес всех этих стальных баллонов, нависающих над ведущей осью.

Пневматические локомотивы компании Baldwin. Компания Baldwin очень хорошо известна как создатель паровозов, но она строила и пневматические локомотивы. В 1897 г. С. М. Вокленом, главным инженером компании, был разработан пневмолокомотив компаунд типа 0―2―0 для компании Philadelphia & Reading Coal & Iron Company, которая хотела использовать его в своей угольной шахте на Аляске, но имеется предположение, что он работал в Пенсильвании, а не на холодном севере. Локомотив получился удачным, и угольная компания заказала ещё три таких локомотива.

Из статьи о локомотиве Харди, помещённой в журнале «Railway and Locomotive Engineering», т. 10, №5, май 1897, можно узнать, что полный заряд воздуха весил более 1,1 т.
Отмечается, что вода, испаряясь в воздухоподогревателе, составляла половину объёма смеси воздуха и пара. Такие системы относятся к паровоздушным.

Конструкции локомотивов Baldwin выглядят вполне стандартными по сравнению с оригинальной конструкцией системы подогрева, используемой компанией Портера. Насколько сейчас известно, компания Baldwin никогда не пыталась применить ничего подобного, вероятно, потому, что разработки компании Портера были защищены патентами Ходжеса.

Имеются сведения о некоторых пневмолокомотивах, построенных заводом Baldwin. Один из них — №11. Воздух хранился в резервуарах под давлением 42 ат, а двигатель рассчитан на давление 7 ат. Локомотиву требовался вертикальный зазор 1,5 м и 1,8 м в ширину для прохождения кривых 9-метрового радиуса. Поскольку виден только один цилиндр, то, похоже, что у этого локомотива двигатель простого расширения.

Вид сбоку локомотива Харди.
Фото из журнала «Street Railway Journal», май 1897.

С помощью небольшой угольной топки воздух до подачи в цилиндры, нагревался. Это, должно быть, несколько подрывало все усилия, направленные на то, чтобы покончить с дымом и шлаком. На передней части крыши кабины виден дымоход. На боковой пластине написано «Rector St».

Локомотив №41 — предназначен для работы на метровой колее. Считается, что это локомотив компаунд с цилиндром высокого давления диаметром 95 мм, низкого давления — 152 мм и ходом поршня 254 мм. Диаметр движущих колёс 610 мм. Один резервуар короче другого, чтобы иметь больше места в будке машиниста. Локомотив оборудован предупредительным гонгом. Заводской номер локомотива 17857 06—00. Данных о давлении в резервуарах и двигателе нет.

Другой вид локомотива Харди сбоку. Он установлен на транспортёр,
который перемещается в сторону автомобиля, чтобы они могли
находиться как можно ближе друг к другу.
Рисунок с сайта «The Self Site: Unusual Steam Locomotives».
Пневмолокомотив типа 0―3―0. Построен для угольной
промышленности локомотивостроительным заводом Диксона в
Скрэнтоне, Пенсильвания, Северная Америка. 1899 г.
Фото с сайта «The Self Site: Unusual Steam Locomotives».
Пневматический локомотив, построенный компанией Baldwin для P&RCI. Дата неизвестна.
Фото с сайта «The Self Site: Unusual Steam Locomotives».

Здесь, судя по надписи на резервуаре, представлен один из локомотивов, принадлежащих компании Philadelphia & Reading Coal & Iron Company. Он похож на локомотив компаунд с большим цилиндром низкого давления, который расположен над меньшим цилиндром высокого давления с двигающимися вместе поршнями. Клапанная коробка находится выше цилиндра низкого давления. Обращают на себя внимание рёбра на блоке цилиндров, предназначенные для поглощения тепла из окружающей среды, чтобы уменьшить охлаждение воздуха при расширении.
Пневматический локомотив, построенный компанией Baldwin для P&RCI. Дата неизвестна.
Фото с сайта «The Self Site: Unusual Steam Locomotives».

Предположительно это один из подземных локомотивов, принадлежавших компании Philadelphia & Reading Coal & Iron Company. Обращают на себя внимание необычные противовесы с двумя секциями, встроенные в колёса. Машина находится в плачевном состоянии — отсутствует клапанная коробка над цилиндрами.

В журнале «American Engineer and Railroad Journal» приводятся сведения ещё об одном локомотиве, построенном на заводе Baldwin. Ниже показан его схематический чертёж. Воздухоподогреватель запатентован Вокленом. Сжатый воздух хранился во множестве цилиндров маленького диаметра, как и на локомотиве Харди, а не в больших резервуарах. Есть опасение, что использование множества маленьких цилиндров, а не одного или двух больших резервуаров, приводило к неэффективному использованию металла. Редукционный клапан перед цилиндрами пропускал воздух в большой цилиндр, расположенный над рамой и являющийся воздушным ресивером, окружённым цилиндрическим барабаном с горячей водой. Часть воды распылялась в центральный воздушный ресивер для лучшего нагревания и способствовала смазке цилиндров. Представляется, что для этого барабан с горячей водой должен находиться под давлением воздуха до редукционного клапана. Горячая вода подавалась из внешнего источника, и это было серьёзным недостатком, поскольку её надо было часто менять — вероятно, намного чаще, чем должны были заряжаться воздушные резервуары. Отработавший воздух выпускался в трубу, как на паровозах.

Пневматический локомотив, построенный для компании Ashland Coal & Iron Railway Co. локомотивостроительным заводом Baldwin
в Филадельфии. Дата неизвестна.
Фото с сайта «The Self Site: Unusual Steam Locomotives».

Имелось три резервуара для запаса сжатого воздуха. Видны только два; третий резервуар меньшего размера установлен внутри рамы. Один из двух верхних резервуаров короче другого, чтобы оставить больше места для очень тесной будки. Похоже, что концы резервуаров вогнуты внутрь для лучшего сопротивления внутреннему давлению.
Пневматический локомотив, построенный заводом Baldwin
для компании H. C. Frick Coke Co. Дата неизвестна.
Фото с сайта «The Self Site: Unusual Steam Locomotives».
Пневматический локомотив Балдвина с подогревателем воздуха. 1899 г. Фото из журнала «American Engineer and Railroad Journal»,
февраль 1899, стр. 58.
...