глубокое обучение — это неотъемлемая часть будущего искусственного интеллекта. Однако на сегодняшний день эти системы не способны к логическим рассуждениям. В то же время подходы к ИИ, основанные на логике, в нынешнем их состоянии несовместимы с обучением. Наша важнейшая задача на ближайшие годы — сделать эти два подхода совместимыми друг с другом.
Идея состояла в том, чтобы предварительно обучить слои сверточной сети извлекать общие шаблоны без их привязки к конкретной задаче. В результате этого слой сети создает представление, из которого можно восстановить входные данные слоя. Эта технология называется «автоэнкодер», особенность ее заключается в минимизации количества включенных нейронов.
В чем состоит деятельность исследователя? Откуда берутся его идеи? Что касается меня, то я уделяю много внимания интуитивным догадкам. Дальше наступает очередь математики. Я знаю, что другие ученые действуют диаметрально противоположным образом. Я проецирую в свою голову пограничные случаи, которые Эйнштейн называл «мысленными экспериментами», благодаря которым вы сначала представляете ситуацию, а затем пытаетесь рассмотреть ее следствия для лучшего понимания проблемы. Моя интуиция подпитывается чтением книг. Я просто пожираю книги. Я исследую работы тех, кто был до меня. Вы никогда ничего не создадите в одиночку. Идеи живут, дремлют, и они возникают в чьей-то голове, потому что пришло время. Так рождаются исследования. Они продвигаются неравномерно, то прыжками, то шажками, а порой — даже пятясь. Но деятельность эта всегда коллективна. Образ одинокого исследователя, делающего в своей лаборатории мировое открытия, — не более, чем романтическая фантастика.
обратное распространение может быть сформулировано математически с помощью Лагранжева формализма (названного в честь франко-итальянского математика XVIII в. и астронома Жозефа-Луи Лагранжа). Это вид формализма, на котором базировалась классическая механика, квантовая механика и теория «оптимального управления».
Физиков интересовала аналогия между полносвязными нейронными сетями («сетями Хопфилда») и спиновыми стеклами. Они видели в них модель ассоциативной памяти в мозге
Спин — это свойство элементарных частиц и атомов, которое можно описать по аналогии с маленькими магнитами, с обращенными вверх или вниз полюсами. Эти два значения спина можно сравнить с состояниями искусственного нейрона: он либо активен, либо неактивен. Он подчиняется тем же уравнениям. Спиновые стекла представляют собой своего рода кристалл, в котором примесные атомы имеют магнитный момент. Каждый спин взаимодействует с другими спинами на основе связанных весовых показателей
HLM является предшественником алгоритма «обратного распространения градиента», который сегодня повсеместно используется для обучения систем глубокого обучения. Вместо распространения обратных градиентов в сети, как это происходит сегодня, HLM распространял желаемые состояния для каждого нейрона. Это позволяло использовать бинарные нейроны, что являлось преимуществом, учитывая медлительность компьютеров того времени для выполнения умножения. HLM был первым шагом в обучении многоуровневых сетей.