Квантовая мозаика
Қосымшада ыңғайлырақҚосымшаны жүктеуге арналған QRRuStore · Samsung Galaxy Store
Huawei AppGallery · Xiaomi GetApps

автордың кітабын онлайн тегін оқу  Квантовая мозаика

ИВВ

Квантовая мозаика: Сборник формул и открытий

Ключи квантового мира: понимание через формулы






12+

Оглавление

Уважаемые читатели,

Позвольте мне представить вам книгу, наполненную множеством удивительных и интригующих формул, созданных самым увлечённым исследователем — ИВВ. В этой книге я собрал и сформулировал различные теории и законы, которые помогут вам взглянуть на мир вновь и с исключительной увлечённостью.


Но что делает эти формулы особенными, это то, что они не просто абстрактными концепциями, они имеют корни в моих собственных исследованиях и открывают путь к новым пониманиям и открытиям.


Читая эти страницы, я приглашаю вас присоединиться ко мне в этом научном приключении. Вместе мы сможем погрузиться в глубины квантового мира, исследовать его законы и загадки. Я уверен, что наше взаимодействие с этими формулами приведет к новым открытиям и расширит ваши горизонты понимания.


Не бойтесь воплощать эти формулы в своих собственных исследованиях и экспериментах. Я взял на себя ответственность создать формулы, но сегодня настал ваш черед использовать их и продолжать исследование этого удивительного мира.


Открытие новых формул в мире квантовой физики. Через формулы, которые создал Я — ИВВ, вы сможете погрузиться в увлекательный мир квантовых явлений.


С любовью к науке,

ИВВ

Открытие новых формул в мире квантовой физики

Формула описывает суперпозицию всех возможных состояний системы с равной вероятностью

(1/√2) Σ|x⟩ + (1/√2) Σ|y⟩ + (1/√2) Σ|z⟩ 
где:

|x⟩, |y⟩ и |z⟩ — различные квантовые состояния системы. Для обоснования данной формулы, сначала заметим, что для любого кет-вектора |ψ⟩, его нормированным значением является ⟨ψ|ψ⟩=1. Также, по определению суперпозиции, любое кет-состояние системы может быть представлено как линейная комбинация других кет-состояний:


|x⟩= a|x⟩ + b|y⟩ + c|z⟩

|y⟩= d|x⟩ + e|y⟩ + f|z⟩

|z⟩= g|x⟩ + h|y⟩ + i|z⟩


где:


a,b,c,d,e,f,g,h,i — коэффициенты линейной комбинации.

Тогда, суммируя все возможные линейные комбинации и умножая на (1/√2), получаем:


(1/√2) Σ|x⟩ + (1/√2) Σ|y⟩ + (1/√2) Σ|z⟩
= (1/√2) (a+b+c) |x⟩ + (1/√2) (d+e+f) |y⟩ + (1/√2) (g+h+i) |z⟩
= (1/√2) (|x⟩ + |y⟩ + |z⟩)

То есть, общее квантовое состояние системы будет представлено как суперпозиция трех различных состояний с равными коэффициентами (1/√2) и будет иметь вид (1/√2) (|x⟩ + |y⟩ + |z⟩).
Для расчета данной формулы также необходимо использовать формулы для алгебраической суммы и разности векторов, а именно:


(a+b) |x⟩ = a|x⟩ + b|x⟩


(a-b) |x⟩ = a|x⟩ — b|x⟩
Тогда:

(1/√2) Σ|x⟩ + (1/√2) Σ|y⟩ + (1/√2) Σ|z⟩

= (1/√2) (|x⟩ + … + |x⟩) + (1/√2) (|y⟩ + … + |y⟩) + (1/√2) (|z⟩ + … + |z⟩)

= (1/√2) (|x⟩ + |x⟩ + … + |y⟩ + … +|z⟩ + … + |z⟩)

...