автордың кітабын онлайн тегін оқу Идеи по атомной механике. Открытие физической основы для теории всего
Андрей Николаевич Чемезов
Идеи по атомной механике
Открытие физической основы для теории всего
Шрифты предоставлены компанией «ПараТайп»
© Андрей Николаевич Чемезов, 2024
Самое лучшее описание физической природы за всю историю существования цивилизаций. Основывается всего на двух постулатах, установленных экспериментально и никем не оспариваемых: 1. Все частицы вращаются. 2. Между частицами нет пустоты. Из этого следуют абсолютно все физические явления и наблюдаемые результаты физических экспериментов в квантовой и любой другой области физики. Предназначение книги — осуществить всеобъемлющее понимание физики и стать настольной книгой каждого учëного на Земле.
ISBN 978-5-0064-3115-7
Создано в интеллектуальной издательской системе Ridero
Оглавление
Для чего и зачем эта книга?
Эта книга представляет собой сборник статей, в которых даётся новое выражение физики с точки зрения механики и математических правил. Описываются законы природы в том виде, в каком они существуют. Рассматриваются ошибки современной физики, которые влекут за собой ряд логических противоречий, ломающих мозг как взрослым учёным, так и обучающимся. Мозголомство — это бич современной науки. Человек со сломанным мозгом — это не учёный, а инвалид в науке. Я считаю, что физика должна преподаваться без теоретической модели, разработанной учёными для её изучения, поскольку теоретическое моделирование сильно искажает представления о процессах, происходящих в реальном мире. Знакомство с теориями должно осуществляться на факультативной основе, после того, как человек понял устройство мира и у него не осталось вопросов (таких людей никто не встречал, но всё же), он готов рассматривать теоретические представления, содержащие ошибки и заблуждения, будучи уверенным, что не сломает при этом свой мозг. Переводить же теоретические представления на язык реальности довольно сложно неподготовленному человеку. Хотя в принципе это то, что я делаю, в этой книге. Чтобы узнать практический опыт, накопленный физиками, я внимательно изучал эксперименты, разбирал их описания. После чего, образно говоря, открывал крышку капота механики и давал свои объяснения по работе механизмов природы.
Я гарантирую, что и вы, уважаемые коллеги, читатели, после прочтения этой книги, будете знать, где ручка капота механики и как её дёрнуть, чтобы увидеть квантовую физику в новом свете. Как бы сказать об этом, никого не обидев? С накоплением опыта у молодых получится понять функционирование каждого узла и детали, как получилось у меня. В любом случае в голове, душе и сердце каждого неизбежно зародится понимание того, как на самом деле устроена механика частиц (отдельные частицы регистрируются только по их зарядам, но поскольку мы познаём мир исключительно через средства регистрации, я озаглавил книгу не «Механика частиц», а «Механика зарядов»; замечу также, что определяются частицы по плотности, но только когда их много, когда они занимают определённый объём и этот объём можно измерить и взвесить на точных весах. Таблица Менделеева — это таблица плотности. А электронный микроскоп, равно как и все остальные измерительные электронные приборы, регистрирует для нас только напряжение зарядов).
В целом, данная книга даёт существенную часть необходимых ответов, в ней рассматриваются самые распространённые эксперименты и явления, известные учащимся, даются обоснованные представления об окружающем мире, без теоретических условностей.
Надеюсь, что с таким подходом к изучению физики рано или поздно вынуждены будут считаться те ребята (то есть я возлагаю надежды на молодёжь и совсем ещё юных), которые видят логику фундаментального устройства мира, и самостоятельно изучают работу инструментальных средств познания этой логики.
Книга предназначена в первую очередь для людей с опытом, способных принять прочитанное к сведению и с течением лет, как делал сам автор, убедиться в правоте и точности данного описания физической картины мира. Книга адресована первооткрывателям, экспериментаторам, исследователям, со временем её также смогут читать все, кто только начинает свой путь в науке. Хотя, может быть, её следует адресовать сейчас именно тем, кто начинает свой путь в науке, с целью объяснить их будущий опыт, который они получат на практических разработках и в экспериментах. Я знаю много троечников, которые видели ошибки учебной программы и категорически не соглашались с ними, я и сам был одним из таких ребят. Мне понадобились десятки лет, чтобы придти к убедительным выводам, полностью устраивающим меня в работе. К выводам, которые позволяют предугадывать результаты разработок и осуществлять их успешно. Поэтому тем, кто сомневался в науке и искал свои варианты объяснений, понимая, что их очень сложно подобрать так, чтобы они не противоречили друг другу, эта книга даст большую фору для развития, а кого-то, возможно, и осчастливит.
С уважением, ваш автор.
ЗАГАДКИ ПРИРОДЫ РАСКРЫТЫ
(краткое содержание книги)
Исходя из обобщения знаний и опыта, не далее как осенью прошлого года я пришёл к выводу о том, что фотон представляет собой не частицу, а состояние частиц. Состояние передаётся от одной частице другой. Между частицами нет пустоты, иначе пустота создавала бы бесконечно большую силу разряжения, за счёт сложения сил притяжения всех окружающих частиц и частиц, лежащих за ними. Ломоносов описывал пространство как математическое распределение сил гравитационного взаимодействия между частицами, зависящее от их плотности. В вакууме все частицы разряженные, то есть увеличенные в размерах. Разряжение атома создаётся силами притяжения окружающих его атомов и следующих за ними атомов, то есть гравитационным полем. Чем меньше плотность частиц, тем меньшее сопротивление они оказывают распространению света. Именно распространению. Свет не летит, а распространяется от одной частицы к другой путём передачи переменного вращения одной частицы другой, скорость смены направления вращения определяется как частота электромагнитной волны, она регистрируется прибором, измеряющим напряжение, а напряжение, которое создаёт частица, является механическим. Оно появляется от вращения частицы.
Фотоном принято называть безмассовую частицу, но частиц без массы не бывает. На самом деле фотон — это состояние, которое одна частица передаёт другой. Скажем, есть у вас редуктор. Первая шестерёнка редуктора передаёт вращение последней, механизм зубчатой передачи из шестерёнок. Но человек не может открыть корпус редуктора и увидеть, что внутри, поэтому строит гипотезу на том, что первая шестерёнка редуктора испускает фотон, который каким-то образом достигает последней шестерёнки редуктора и передаёт ей импульс силы. При этом игнорируется тот факт, что все шестерёнки редуктора неподвижны, единственное, что они могут делать — вращаться, либо по часовой стрелке, либо против часовой.
Элементарные частицы, если рассматривать их по отдельности, всегда неподвижны относительно друг друга, потому что сила притяжения одной частицы всегда меньше суммы сил гравитационного притяжения окружающих её частиц. Из этого следует вывод, что все частицы находятся в гравитационном плену друг у друга. Частицы с низкой плотностью, лёгкие элементы, могут быть подвижны, но их подвижность носит колебательный характер вокруг точки равновесия, такая подвижность ограничена соседними частицами, как в броуновском движении (я имею в виду сам опыт, наблюдение, а не ошибочное объяснение увиденного, которое дают на уроках физики, рассказывая про броуновское движение). Чтобы выйти из гравитационного плена, частицы должны объединиться в массив и получить энергию, например тепловую. При нагреве частицы увеличиваются в размерах, их плотность уменьшается по сравнению с окружающими частицами, возникает дисбаланс сил гравитационного притяжения, который, при определённых условиях, приводит к тому, что массив начинает двигаться в направлении, обратном направлению силы притяжения в гравитационном поле. Струйное течение лёгких элементов (дыма, например) в среде, которая состоит из относительно плотных элементов, складывается по математическому правилу, о котором я сказал выше — менее плотные элементы выталкиваются более плотными элементами среды за счёт сил разряжения. В данной ситуации действие антигравитационных сил можно представить и более очевидным образом: плотные элементы обтекают лёгкие элементы в направлении гравитационного поля, тем самым вынуждая последние двигаться против направления гравитационного поля. Любопытный факт: массу имеют и те, и другие частицы, но движутся они в противоположные стороны, находясь в одном гравитационном поле. Этот факт убедительно доказывает, что не планеты и не звёзды являются источником гравитационного поля, а частицы. Они своей массой предопределяют, куда повернут соседние частицы, являющиеся частью обособленного массива частиц. Правда, в случае с твёрдыми телами, состоящими из тяжёлых элементов, вся энергия подъёма уходит на трение, поэтому масса тел при нагревании нисколько не уменьшается, если нагретые тела при этом не загораются и не переходят в газообразное состояние, в дым, способный струиться и течь в атмосфере.
Стоит также отметить, что выход из гравитационного плена под действием тепла всегда приводит к появлению тяги, направленной противоположно течению гравитационного поля. На этом принципе с древних времён летают аэростаты.
Что касается гравитационного поля планеты, оно формируется массивом всех частиц, из которых состоит планета. Сила и направление гравитационного поля планеты определяются математически как сложение гравитационных сил отдельных частиц. В том числе и тех частиц, которые имеют наименьшую плотность и вытеснены гравитацией в атмосферу. Они производят давление на поверхность Земли, со стороны атмосферы, а значит участвуют в формировании гравитационного поля планеты. Однако необходимо учитывать такой нюанс: земная поверхность находится в глубине гравитационного поля планеты, на границе между атмосферой и землёй, то есть не только земля притягивает к себе атмосферу, но и атмосфера притягивает к себе землю. Разница между этими силами притяжения формирует уровень относительной силы притяжения на поверхности Земли. Это подтверждается и опытным путём: когда над высокоточными весами увеличивается плотность воздуха, нарастает атмосферное давление — они показывают меньший вес. О влиянии плотности воздуха на погрешность весов рассказывается в инструкции к высокоточным весам.
Ну, а фотон — это передача энергии вращения от одной частицы другой, как в механизмах зубчатой передачи. Каждая шестерёнка, если она неподвижна, получает энергию вращения от соседней шестерёнки. Поэтому фотон, как состояние, характеризуется энергией, но не имеет массы. Движение фотона осуществляется механической передачей энергии, сами частицы при этом находятся на одном месте и в жёсткой осевой связи друг с другом, свет передаётся в осевом направлении вращения, частица насаживается на частицу за счёт коловратного вращения, как говорил Ломоносов, то есть вращения с продольной тягой, как у винта. Обратите внимание на работу Ломоносова, написанную им в 1741 году: «Элементы математической химии». Человек со счётами тогда ещё знал, как построить математическую модель Вселенной, он был в шаге от создания этой модели, «формулы всего» так называемой. Не хватало только суперкомпьютера.
Однако когда суперкомпьютер «Ломоносов» заработал, математически точные определения, представления об окружающем мире, изменились. К существованию материи стали относить и то, что никак в голове не укладывается. И даже то, что опровергается опытом.
Обращение в Российскую академию наук
Квантовая физика. Открытие основ для новых теоретических представлений
Адресовано Российской академии наук, в лице президента РАН академика Геннадия Яковлевича Красникова, и членам экспертной комиссии.
Написано Андреем Николаевичем Чемезовым в октября 9-й день лета 2023.
г. Тюмень.
Российской академии наук,
президенту РАН академику
Геннадию Яковлевичу Красникову
Уважаемый Геннадий Яковлевич!
Уважаемые члены экспертной комиссии!
Я обращаюсь к вам с просьбой провести экспертизу научной идеи.
Хочу предложить новый способ изучения квантовой физики (основных, ключевых еë понятий) — при помощи законов классической механики.
Прошу вас определить истинность моих суждений, во избежание возможных недоразумений со стороны не вникших в курс дела людей, а также с целью популяризации научных знаний в области квантовой физики новым методом. Основа его заключается в применении простых и понятных правил, формулировок, исходящих из законов классической механики.
Возможно, вам моë предложение покажется спорным или даже провокационным, но это только на первый взгляд. Не спешите его отвергать, пока не прочтëте рукопись, которую я предлагаю вашему вниманию в прилагаемом к этому письму документе.
Мне удалось постичь глубинные основы квантовой физики после того, как я начал применять правила классической механики, рассматривая взаимодействие и поведение элементарных частиц. Именно в тех условиях, которые описываются нынешними теоретиками квантовой физики, исходя из их взглядов… Никаких своих гипотез, требующих экспериментального подтверждения, я не выдвигаю. Всего лишь даю объяснение давно известным результатам экспериментов и наблюдений, которые проводились и проводятся физиками на протяжении более ста лет при изучении свойств элементарных частиц и материи. Это можно сравнить с раскрытием секрета фокуса. Когда раскрывается фокус, исчезает налëт магии, остаëтся чистая механика и техника исполнения. Точно таким же образом исчезают и парадоксы квантовой физики, основанные на противоречиях, воспринимаемых как данность. Задача книги в том, чтобы внести ясность и логику в понимание квантовой физики, полностью исключив при этом любые противоречия не только здравому смыслу, но и классической механике.
Изначально я вовсе не планировал писать больше 1—2 заметок об электрических зарядах, мне это было необходимо для качественного выполнения разработок необычных электрических схем, для улучшения понимания и восприятия процессов, связанных с протеканием электрического тока в цепи. Я возжелал выяснить, что такое заряд с точки зрения механики. Каким образом заряд регистрируется измерительными приборами. Какой процесс подразумевается под фактом регистрации, лежит ли в основе этого процесса механика (механическое взаимодействие зарядов).
Собственно говоря, квантовая механика не отрицает, что заряды производят какое-то механическое действие. Но какого рода это действие? Благо опыты с электрическими схемами доступны всем. На любую радиодеталь есть подробная инструкция, технический паспорт с полным списком параметров. И я приступил к разгадке этой тайны. Это было лет 5 назад. В конце концов, перебрав множество вариантов, я остановился на том, что заряд — это вращение. Само вращение возникает из-за действия сил гравитационного притяжения между зарядами, накапливается и передаëтся в результате избытка этой силы, создаваемой искусственно на генераторе или ином источнике тока. Под действием гравитационной силы я подразумеваю силу притяжения между зарядами. Эта сила трансформируется в энергию вращения заряда, в механике рассчитываемую как кинетическую энергию маховика Eк = 1/2 * m * v2, а в релятивистской механике E = mc2.
Физическая скорость вращения зарядов, превышающая некоторую естественную скорость вращения, определяется как электрический потенциал. Разница потенциалов на разных участках цепи определяется как электрическое напряжение. А физическая сила, передаваемая зарядами при вращении, определяется как электрический ток. Он появляется за счёт нагрузки, а когда энергия высвобождается, заряды перестают избыточно вращаться, если их не подпитывает источник тока. Таким образом электричество — это избыточная сила притяжения между зарядами, заключëнная в энергии их вращения. Именно по этой причине вокруг зарядов возникает магнитное поле, оно искажает общее гравитационное поле. Локальное искажение гравитационного поля определяется как магнетизм. Он по-разному действует на разные материалы ввиду их разной плотности, разной структуры и ввиду ограниченности размеров проводника, создающего магнитное поле, по сравнению с размерами Земли, если эксперимент проводится в земных условиях. Элементарное сложение всех гравитационных сил частиц, находящихся в магнитном поле и за его пределами, даëт полное соответствие магнитным свойствам любого материала. Механику притяжения и отталкивания зарядов я описываю в своей книге.
Отношение напряжения к силе тока определяется как сопротивление (закон Ома). В отличии от таких величин как напряжение и сила тока, сопротивление не является независимой величиной, оно выводится из соотношения двух величин, определяемых как скорость вращения зарядов и сила вращения. То есть сопротивление определяется делением одной физической величины на другую, но при этом характеризуется такими объективными параметрами как температура, строение, структура материала проводника. Если эти параметры стабильны, то сопротивление работает как резистор. Не стабильными сопротивлениями обладают все прочие радиодетали: диоды, конденсаторы, катушки, транзисторы… Вообще смысл электрической схемы, можно так выразиться, в вариативности сопротивлений используемых в ней компонентов, деталей. Электрическая схема управляет ничем иным как сопротивлениями разных участков электрической цепи.
Между частицами пустоты нет, иначе пустота создавала бы разряжение атомов бесконечно большой силы. Сами атомы создают данное разряжение, воздействуя гравитационными силами притяжения друг на друга. Именно поэтому, когда мы создаëм вакуум, мы испытываем силу гравитационного притяжения не только между атомами, но и внутриядерные силы. Они создают то самое разряжение частиц, которое наблюдается в глубоком вакууме.
Пространство следует понимать как бесконечный массив частиц разной плотности, разной структуры. Все частицы в этом массиве действуют друг на друга своим притяжением. В таком представлении гравитационные и магнитные поля, химические связи легко поддаются математическому описанию. Если я правильно понимаю, об этом же красноречиво говорят названия трудов Ломоносова: «Элементы математической химии», «Теория электричества, изложенная математически». Электричество, магнетизм, гравитация, химические связи — всë создаëтся силами вращения, притяжения и отталкивания зарядов, а поскольку массив создаëт упорядоченную структуру, описываемую притяжением частиц, имеются все необходимые данные для того, чтобы изучать её при помощи математического анализа.
В первых главах книги я как бы не горел желанием рассматривать структурное строение, поведение атомов за рамками электрических процессов. Описывал только то, что наблюдается воочию и требует одного: краткого разумного объяснения. Но впоследствии, на что приходила ясность моего понимания в этой теме, о том и писал. И постепенно, шаг за шагом, поднимая всë более сложные темы одну за другой, клубок квантовой структуры начал распутываться в моей голове, чего я не ожидал совсем. Поэтому есть намерение опубликовать сейчас главы книги в обратном порядке, от 35 к 1, то есть книгу лучше читать не сначала, а с конца.
Правила классической механики просты, понятны каждому школьнику благодаря своей логичности и наглядности. Практически все рассматриваемые современной наукой квантовые процессы легко разбираются логикой, а значит математикой, если для этого, без каких-либо ограничений, применять правила и законы классической механики.
Был ли Ломоносов квантовым теоретиком? Раньше мне казалось, что нет, конечно же не был. Но сейчас я считаю, что Михаил Васильевич был куда более продвинутым квантовым теоретиком, чем все нынешние физики, об этом открытии я также рассказываю в своей книге. Видимо, ограниченный объём информации помог Михаилу Васильевичу придти к правильным выводам, об остальном уж не знаю.
Считаю, что популяризировать можно только то, что будет понято народом и применено с пользой.
Хочу предупредить: у меня никогда не возникало мысли дискредитировать чьë-либо учение, принять позу противника чьих-либо теорий. Наоборот, я хочу, чтобы любой школьник понимал законы квантовой физики, в том числе и в традиционной форме подачи, демонстрируемой советскими учебными фильмами на эту тему, для этого познания применяя законы классической механики, к озвученным теоретикам образам, и используя те подходы, о которых я рассказываю в своей книге.
Также я не отрицаю и не отвергаю ничего сущего в экспериментах, ибо на этом строится любая теория! Моя задача только в том, чтобы раскрыть то, что сокрыто под теми или иными формулировками, терминами, исходя из законов классической механики. Если же при этом вскрываются очевидные заблуждения, ошибки в образовательной интерпретации экспериментов и результатов научных исследований, то нет вины моей в этом; я стараюсь избегать не нейтральных суждений на тему чьих-либо ошибок, так как это было бы отвлечением, не относящимся к существу поднимаемых мною вопросов. Для меня моя задача в том, чтобы подсказать дорогу слепому, рассказать, что он нащупал. Ведь то, что нащупал слепой, является истиной, а то, что он не смог объяснить правильно, является виной его зрения. Я перебирал множество вариантов, чтобы разгадать квантовый ребус, ведь и сам-то не обладаю оптическим инструментом, способным увидеть взаимодействия и поведение элементарных частиц на атомном уровне, но мне приятно, что я всë-таки разгадал, надеюсь и вам будет приятно прочесть мою разгадку.
Рассчитываю на то, что получу от вас одобрение и включу ваше экспертное заключение в содержание предлагаемой вашему вниманию книги: «СОСТОЯНИЯ ЧАСТИЦ. МЕХАНИКА ЗАРЯДОВ».
Андрей Николаевич Чемезов
P. S. Мне 47 лет. В 2017 году Российская академия наук провела экспертизу моих идей по коммерческому освоению Луны, ответ был получен мной от вице-президента РАН академика Валерия Григорьевича Бондура — письмо из РАН прикреплено к этому письму. Работа над тем проектом перешла в практическую плоскость. Сейчас я испытываю стенд: <…>
В следующем письме я планирую передать Валерию Григорьевичу ссылку на подключение к управлению через интернет телеуправляемым луноходом массой в несколько десятков граммов. Ссылка на подключение и управление в режиме он-лайн. Отработав управление на стенде, я хочу отправить доработанную и испытанную модель на Луну вместе с международной лунной экспедицией «Чанъэ-8», приглашение от которой для иностранных участников открыто до 31 декабря 2023 года. Моя цель — подключение к луноходу через интернет и поочерëдная эксплуатация его допущенными к вождению на Луне водителями в порядке живой международной очереди. О схеме подключения к луноходу на Луне с использованием уже имеющегося на китайском луноходе или на китайской платформе «Чанъэ-8» канала передачи данных я расскажу в следующем письме.
Конец письма. Ответ РАН опубликован на странице 132 в этой книге.
МЕХАНИКА ЭЛЕКТРИЧЕСКИХ ЗАРЯДОВ мой опыт с электричеством
Андрей Чемезов. 26 марта 2023
Все загадки электричества объясняются только механикой.
I. Механика ионизации
Если вы не будете представлять себе механику притяжения и отталкивания зарядов, то будете действовать вслепую и эдак никогда не закончите с экспериментами. Это нужно объяснять ещё в школе. Заряд означает вращение. Одно и то же вращение, если смотреть на него сверху и снизу, положительное и отрицательное. Поэтому с большинства частиц регистрируется и положительный, и отрицательный заряд. Такие частицы называются диполями. Ионы — это либо положительные, либо отрицательно заряженные частицы, точнее сказать они регистрируются как либо положительные, либо отрицательные. Почему? Потому, что они представляют собой сильно вытянутое вращение, подобие тонкой спирали, струны, на одном конце которой всегда будет положительный заряд, а на другом конце отрицательный. Но! Все частицы соориентированы гравитационным полем, а гравитационные поля есть везде: и на Земле, и в космосе, и у Солнца, и у планет. Поэтому ориентация частиц почти никогда не меняется, и возникает упорядоченная регистрация ионов как либо положительных, либо отрицательных зарядов. Как правило, положительные и отрицательные ионы соседствуют на небольшом расстоянии друг от друга, но иногда это расстояние может быть значительным, а в космических масштабах — очень значительным.
Положительные заряды притягиваются к отрицательным по той причине, что их поля вкручиваются друг в друга, верх вращения отрицательный и низ вращения положительный находятся на одной оси не только внутри одной частицы, но и в паре частиц, если они находятся одна над другой.
Так механически выглядит притяжение и отталкивание зарядов. А ионы — это концы цепочки зарядов. Молния мчится туда, где нить зарядов длиннее, потому что сама молния несёт в себе концентрацию положительных ионов. Чтобы поймать положительный солнечный ион, нужны концы ионных нитей, состоящие из отрицательных зарядов. Два противоположных знака сцепятся друг с другом механически и появится электрический ток. Так выглядит механизм ионного взаимодействия.
Следует учитывать, что сильные ионы образуются там, где электрический ток не может течь, то есть в диэлектрике, а исчезают там, где электрический ток начинает течь, то есть в проводнике. Для образования ионов нужно электрическое поле. Оно упорядочивает диполи, как и магнитное поле (магнетизм — это вообще тень электричества, притяжение и отталкивание электрических зарядов называется магнетизмом, а заряды всегда либо притягиваются, либо отталкиваются, поэтому магнитное поле всегда стоит рядом с электрическим, как его тень). Диполи притягиваются друг к другу своими разноименными зарядами и в электрическом поле образуется длинная заряженная нить, которая с одного конца регистрируется как положительный ион, а с другого конца как отрицательный ион. Но если мы рассматриваем тот же самый процесс в твёрдом веществе — диэлектрике, то там всё упорядоченно и хорошо видно, как последовательно соединённые электрические цепи диполей дают противоположного знака заряды на разных концах диэлектрика. Причём последовательное соединение зарядов-диполей даëт рост напряжения (так же, как если вы будете соединять последовательно батарейки, например типа AG), а параллельное сложение цепей диполей даëт рост тока в проводнике. Оба этих фактора принимаются во внимание при проектировании обкладок конденсаторов; ёмкость конденсатора зависит от площади диэлектрической прокладки в нём, а напряжение, которое способен выдержать конденсатор — от толщины этой прокладки.
Электрический ток существует только в проводнике, а электрическое напряжение существует и в проводнике, и в диэлектрике. При заряде конденсатора дипольные цепи в диэлектрической прокладке конденсатора увеличивают свою длину, а при штатном разряде конденсатора они плавно уменьшаются. При пробое конденсатора они распадаются, происходит мгновенный разряд, что иногда выглядит как взрыв конденсатора.
Если в качестве диэлектрического слоя брать газ или космический вакуум, то в нëм получаются длинные, вытянутые нити зарядов, которые чертыпыхаются как волосы девушки. Такие заряды обладают колоссальной энергией в космосе, но не за счёт скорости движения от источника излучения, а за счëт скорости вращения самой цепочки зарядов. Ведь заряды обладают массой, которая, при вращении, даёт кинетическую энергию. Получается, что ионная нить обладает кинетической энергией вращающихся в ней зарядов. Эта энергия формирует нить и передаётся нитью со скоростью света с одного конца нити на другой. В роли приёмника окажется любое физическое тело, которое встанет на пути передачи энергии этой нитью. Что, конечно, очень плохо, как для электроники, так и для человека в космосе.
Движение и вращение небесных тел, космических объектов, может как усиливать, так и ослабевать воздействие ионных нитей на них.
Чем быстрее вращаются ионные нити зарядов, тем мощнее воздействие ионизированного и электромагнитного излучения.
Если бы радиация и другие виды электромагнитных излучений состояли бы из потока движущихся высокоэнергетических частиц, то, учитывая скорость предполагаемого потока, а она равна скорости света, Солнце на глазах теряло бы массу. К тому же, поток должен где-то заканчиваться, бить по планетам, как из брандспойта, по Марсу, по Луне — там что, постоянно растëт насыпь, образуемая потоком солнечных частиц? Нет, конечно же, ничего подобного не наблюдается. На Луне есть кратеры, в которые никогда не заглядывает Солнце. И эти кратеры ничем не отличаются от обычных.
Можно сказать, что все регистрируемые космические ионы имеют хвосты, которые представляют собой заряженные нити энергии. Вблизи Солнца вдоль этих нитей энергии текут потоки солнечного вещества — вещество притягивается к ионным нитям! Вещество формирует солнечную корону.
То же касается и вещества комет, подлетающих к Солнцу. За кометами тянутся длинные хвосты.
Часть ионных нитей отрывается от Солнца, или смещается друг к другу под действием магнитного притяжения, образуя замкнутые линии солнечной короны, наблюдаемые в телескоп за счёт притягиваемого к ионным нитям вещества.
А вблизи поверхности Земли аналогичные ионные нити, но размерами намного меньше. Чтобы приподнять их, используют молниеотвод. Верхний конец молниеотвода насыщается ионными нитями, растущими от земли, от заземления, поэтому молния цепляет их и бьёт в молниеотвод, а не абы куда.
II. Механика проводимости (электрического тока в проводнике)
Заряд — это вращение.
Вращение от заряда к заряду может передаваться как вдоль, так и поперёк. Вдоль (по осевой линии вращения) передаётся только напряжение. Поперёк (перпендекулярно линии вращения) передаëтся ток и напряжение.
Продольное вращение образует ионные нити зарядов в газообразной диэлектрической среде.
В твëрдом диэлектрике продольное вращение образует последовательные электрические цепи, состоящие из отдельных зарядов, как из маленьких батареек размером с атом или с молекулу.
Что касается жидкой среды, то нужно иметь о ней представление, соответствующее её свойствам. Заряды в жидкости не имеют вертикальных молекулярных связей, этим они подобны зарядам в газе, но имеют горизонтальные молекулярные связи, этим они подобны зарядам в твëрдом веществе. Горизонтальные молекулярные связи в жидкости образуются благодаря тому, что все частицы в жидкости соориентированы магнитным полем планеты, я так полагаю исходя из наличия круговых океанских течений. По сути, жидкость — это тончайшие слои твëрдого вещества, наложенные друг на друга. Если брать эти слои в отдельности, то они выглядят как плëнка, ими создаëтся поверхностное натяжение воды, например, оболочка пузырей, пены, а если брать эти слои вместе, то они начинают продольно скользить, как пачка листов бумаги, образуется текучесть жидкости. Но нужно учитывать, что эта текучесть возможна только под действием гравитации планеты, в невесомости жидкость не течëт. В невесомости жидкость образует плëночные пузыри (водяной шар в невесомости — это множество пузырей, вложенных один в другой). Уберите земную гравитацию, и вы сразу поймëте, что представляет собой жидкость — это одномерный твëрдый материал, наподобие плëнки, связанный в одной плоскости, а не в объёме, как привычное нам твёрдое тело.
Поскольку молекулярные связи в плоскости сильны, материал замыкается в пузыри. Он и в условиях гравитации планеты стремится это делать, но тут у материала появляется такое свойство как текучесть, и он меняет форму, становится жидкостью. То есть, повторю, жидкость может существовать только в условиях гравитационного действия планеты, под действием гравитации твëрдый, многослойный одномерный материал с электрическими зарядами на разрывах, начинает течь.
А вот многомерный твердый материал в условиях гравитации не течëт, он сохраняет целостность своей структуры, геометрию которой гравитация чуть-чуть нарушает, что характеризуется таким свойством как вязкость.
В диэлектрике оси зарядов подвижны. Именно поэтому они могут менять ориентацию под действием электрического поля и выстраиваться в последовательно соединëнные электрические цепи.
В проводнике оси зарядов не подвижны. Именно поэтому они не меняют ориентацию под действием электрического поля и проводят электрический ток. Каким образом это происходит? Как выглядит механика проводимости твёрдого тела? Всё очень просто. Заряды расположены параллельно друг другу. Их удерживают в таком состоянии силы внутриатомного притяжения. Заряды вращаются (само слово заряд в физическом смысле уже означает вращение; когда я говорю, что заряд неподвижен, я имею в виду фиксированное вращение). Заряды вращаются, увеличение скорости вращения приводит к тому, что диаметр зарядов увеличивается, они входят в механическое сцепление друг с другом и начинают передавать свою энергию вращения другу другу как шестерёнки в зубчатом механизме. Только сцепление происходит не зубцами, а вихревыми полями. При достаточной жёсткости сцепления энергия тока проходит по проводнику почти без потерь, со скоростью света. Свойства проводника на скорость тока не влияют. Если вы возьмёте ряд идеальных шестерёнок, у которых нет никакой подвижности, кроме осевого вращения, то у вас получится такая же мгновенная передача энергии, от первой шестерёнки к последней.
Но самое интересное — как эти шестерёнки вращаются? Подумайте — как? Они вращаются навстречу друг другу! Таким образом через один вы будете регистрировать положительный и отрицательный ионный заряд. И вот, какой-то умник, прошу прощения, снимая эти показания, решил, что данная картина подтверждает движение электронов в цепи электрического тока и даже определил скорость их движения — несколько миллиметров в секунду (не знаю, может рука тряслась у него). Но что на самом деле зарегистрировал прибор? Он зарегистрировал вращения зарядов по часовой и против часовой стрелки через один. Детектировать на таком микроскопическом уровне можно только вращение. Именно поэтому штука, которая детектирует вращение, называется электронный микроскоп. Она ничего не видит. Она только чувствует иглой направление статического тока (заряда) к игле и от иглы, и в зависимости от этого направления определяет, положительный или отрицательный заряд оказал воздействие на иглу микроскопа. Всё остальное учëные домысливают и дорисовывают сами, пытаясь интерпретировать процессы, происходящие в проводнике. Они делают это c некоторой долей наивности, поэтому комментировать их интерпретации довольно тяжело.
Сопротивление току у проводника тем меньше, чем меньше «люфт и шатание шестерёнок» под действием электрического поля, то есть чем меньше ось вращения заряда отклоняется от вертикали, тем выше проводимость тока у проводника. А отклоняется она от вертикали потому, что плюс притягивается к минусу! В диэлектрике отклонение максимальное, что приводит к стыковке зарядов друг с другом под действием электрического поля в последовательные цепи и вместо проводимости электрического тока они дают собственное напряжение цепи, что фиксируется мультиметром как падение напряжение на проводе.
Идеальных проводников не бывает, так же как не бывает идеальных диэлектриков, любой материал — это что-то среднее между тем и тем.
В «Механике ионизации» я отметил, что напряжение цепи диэлектрика в конденсаторе определяется длиной этой цепи, а ток, который может дать конденсатор, зависит от количества этих цепей. Так вот, ток конденсатором выдаëтся за счёт вращения цепей зарядов в диэлектрике, так же, как в проводнике. Это вращение подхватывается электродами конденсатора, которые состоят из токопроводного материала, и далее идëт по проводнику в цепь.
Интересно, что максимальная плотность тока всегда наблюдается на поверхности проводника, плотность тока падает в равной мере как к центру проводника, так и во внешнюю среду от поверхности проводника, по крайней мере такое утверждение существует в книгах по электрике. Это значит, что энергия вращения никак не связана с материалом проводника, она только передаëтся им. Но чем выше качество материала как проводника — тем выше коэффициент передачи тока. Как, впрочем, и в любом маховике — вращением запасается энергия, она не связана с какими-то там блуждающими электронами, обьем энергии зависит только от скорости и объёма вращения. Ну, и от плотности массы маховика, если быть точным.
Чем толще провод, тем больше тока он проводит.
Чем массивнее маховик, тем больше энергии вращения он запасает.
Передача напряжения от толщины провода практически не зависит. Но чем больше напряжение, тем дальше распространение тока от поверхности проводника (по этой причине высоковольтные провода имеют более толстую изоляцию, препятствующую перетеканию тока на «облокотившиеся» на них проводники). Характер распространения тока указывает, во-первых, на длину дипольных цепей, участвующих в передаче напряжения, во вторых, указывает он на то, что дипольные цепи в проводнике расположены поперёк направлению тока, в-третьих такое положение дипольных цепей указывает на то, что они неизбежно будут ионизировать диэлектрический материал, примыкающий к проводу, в том числе воздух. И действительно, так оно и происходит.
Чем длиннее дипольная цепь в проводнике — тем больше напряжения она передаëт и таким же образом выстраивает соседнюю дипольную цепь. Поперёк току.
Но если дипольная цепь в проводнике выстроится вдоль направления тока, то есть вдоль проводника — она будет диэлектрической, и будет препятствовать прохождению тока через проводник.
Таким образом подвижность зарядов в проводнике всë-таки есть, но это небольшая подвижность вдоль оси, возникающая при изменении напряжения, в отличии от диэлектрика, где заряды настолько подвижны, что их ось вращения меняет угол на 90 градусов; подвижность в проводнике зарегистрировать никак не удастся.
Что касается жидкости, то там всё гораздо запутаннее, чем в твëрдом теле. Идеально чистая вода является диэлектриком — если между слоями воды нет никаких токопроводных примесей, то ток не проводится ею (дистиллированная вода). Если же примеси есть, то возникает ионная проводимость жидкости, которая достигает максимума в электролите.
III. Механика электромагнитных волн
Каким образом Солнце согревает нас? Что является проводником энергии от Солнца? Что именно представляет собой тот физический материал, который переносит энергию от Солнца прямиком к нашему телу?
Видимый свет, ультрафиолетовое излучение, излучение инфракрасного диапазона, радиоволны, γ-лучи состоят из нитей ионизации. Эти нити свободно проходят через космический вакуум, потому что он содержит небольшую плотность частиц, как диэлектрик.
Диэлектрик переносит энергию вращения зарядов вдоль линии их вращения, поэтому Солнцу не нужен провод, чтобы доставить нам своë тепло. Точнее сказать, физический провод есть — это ионизированная цепь. Но это не тот провод, который болтается на плече у электрика. Для того, чтобы диэлектрический провод работал, нужен космический вакуум, другой тип диэлектрика, например воздух, для этого не подходит — он рассеивает энергию беспроводной передачи.
Атмосфера Земли обладает достаточной плотностью, чтобы быть приёмником космического электромагнитного излучения, рассеивающим его в достаточной мере, обеспечивая при этом безопасность проживания живых организмов. Озоновый слой большой роли в обеспечении этого фактора безопасности не играет, так как он представляет собой продукт взаимодействий — нестабильный ионизированный кислород, часть ионизированной прослойки атмосферы, образуемой в результате взаимодействия молекул кислорода О2 с космическим электромагнитным излучением.
Следует понимать, что тепло от Солнца поступает к нам именно механическим образом, от одного заряда к другому, путëм вкручивания вращающихся полей зарядов друг в друга, что создаëт взаимное притяжение их и вращение всей получившейся ионизированной цепи зарядов в космическом вакууме.
А приёмником солнечной энергии является любое плотное тело, встающее на пути передачи солнечной энергии.
* * *
На основе этого представления становится понятна, например, причина равенства скорости света, скорости электрического тока в проводнике, скорости радиоволн и т. д.
Всё имеет одну и ту же скорость передачи энергии, поскольку создаëтся одним и тем же вращением зарядов! Только в диэлектрике вращение передаëтся вдоль оси вращения зарядов, а в проводнике — и вдоль, и поперёк, от одного заряда к другому. Передача энергии осуществляется механическим образом в обоих случаях. По факту, мы имеем дело с тем, что скорость передачи энергии зависит только от состояния элементарных частиц, а их состояние в обоих случаях одинаковое: они вращаются. Точка. Не имеет значения, сверху или сбоку один волчок цепляет другой — энергия от одного волчка к другому передастся с одной и той же скоростью.
Это и обуславливает равенство скоростей электрического тока в проводнике и передачи электрического напряжения в вакууме.
Если вы сильнее закручиваете цепь, вы увеличиваете её напряжение. И оно (изменившееся напряжение) со скоростью света передаëтся на другой конец цепи, где диэлектрик встречается с проводником и напряжение ионизированной цепи создаëт слабый электрический ток, от точечного ионизированного воздействия на любую из частиц проводника.
Что же такое электромагнитная волна?
Электромагнитная волна — это переменное напряжение ионизированной цепи в диэлектрике. Приëмник, улавливая его, формирует сигнал…
IV. Механика радиопередачи
Частота радиопередачи задаëтся частотой смены направления тока на антенне передатчика. Так называемая «амплитуда волны» задаëтся сменой силы тока на антенне передатчика, для простоты можно сказать — сменой напряжения.
Чем выше частота, тем легче схватываются тонкие нити ионизации между передатчиком и приëмником на коротком расстоянии. Эти нити легко колеблются от помех, что создаëт ложное впечатление «радиоволны», огибающей препятствие. Да, препятствия огибаются ионными нитями, но в условиях многочисленных помех на Земле колеблются ионные нити хаотически, и если их при этом не спутывает в узелки и не разрывает после этого спутывания, то сигнал не прерывается.
Не связанные ионные нити, идущие от антенны, колеблются подобно сильно наэлектризованным волосам девушки.
А волна — это упорядоченное колебание, то есть колебания с равными промежутками, заданными частотой. Посмотрите на речную или морскую волну — там нет хаотических колебаний, там волна. В радиопередаче «волна» задаëтся колебанием силы тока на антенне, что передаëтся колебанием напряжения на нити ионизации. Чтобы приëмник смог поймать смену напряжения нитей ионизации и превратить их в ток на своей антенне, он должен формировать свои нити ионизации, притягивающие отрицательными концами положительные нити ионизации передатчика, приëмник должен делать это на той же частоте, что работает передатчик. Так формируется «прослушивание эфира». Сигнал на антенну приёмника поступает в виде смены напряжения на нитях ионизации, чем слабее напряжение, тем меньше ток на антенне приëмника. Все помехи при радиопередаче формируются самим приëмником. Если его питание плохо стабилизировано, то на принимающей антенне возникает смена напряжения от приëмника, которая и создаëт помехи. Радиопередатчик помех создавать не может. Он передаëт только то, что передаëт. Сигнал либо доходит до приëмника, либо не доходит. Чтобы сигнал увереннее доходил до приëмника, он должен быть сильным (большой ток на антенне передатчика создаст больше нитей ионизации), для этого нужно повышать мощность передатчика, но на наличие помех в сигнале регулировка мощности передатчика не влияет. На это влияют другие факторы формирования нитей ионизации на той же частоте.
Почему смена тока на антенне передатчика задаëт нужную частоту радиопередачи, но не создаëт помех? Потому, что при протекании тока по антенне заряды вращаются навстречу друг другу, и они создают равное количество нитей ионизации, направленных как к антенне, так и от неё. То же самое происходит на антенне приëмника. Каждый раз при смене направления тока происходит смена направления вращений нитей ионизации, но нити не разрываются при этом, они лишь меняют направление вращения, а значит передачу напряжения от передатчика к приëмнику с заданным периодом частоты периодически ведут на противоположную сторону. Это выглядит запутанно, согласен, но давайте не забывать, что сигнал радиопередачи формируется изменением уровня напряжения, а смена тока и направления напряжения на нитях ионизации происходит попарно, нити ионизации уравновешивают друг друга подобно тому, как это происходит в бытовой сети переменного тока 220В/50 Гц: пока по одному проводу течёт плюс, по другому течëт минус, а через две сотые доли секунды — наоборот. Это тоже сложный процесс передачи тока и напряжения, и его не так-то легко объяснить. Нужно просто запомнить, что в какую бы сторону ни вращались шестерëнки механизма — они в любом случае создают энергию передачи, и эта энергия мгновенно принимается на другом конце провода, а в случае радиопередачи — она оказывается на приëмнике.
V. Механика времени
Что такое длина волны 300 тысяч километров при частоте 1 Гц? Это расстояние, на которое успевает распространиться электромагнитное взаимодействие в ионной нити за 1 секунду, то есть расстояние, на котором частицы вступают в механическое вращательное взаимодействие друг с другом ровно через 1 секунду. Кстати, из этого определения складывается размерность секунды, как основной физической единицы измерения времени, но мы сейчас не столько о времени, сколько о механике взаимодействия частиц, позволяющей дать точное определение константе времени, благодаря, по-видимому, постоянной скорости процесса взаимодействия, связанной, как мне представляется, с равной инертностью элементарных частиц, а значит с их равными размерами. Если бы элементарные частицы отличались друг от друга по габаритам, то так называемая скорость света не была бы постоянной, из-за разной инертности частицы вступали бы во взаимодействие друг с другом на одном и том же расстоянии с разной скоростью. И не было бы такой математической размерности, как время.
Основные свойства элементарных частиц в том, что они являются точным подобием друг друга, как бы далеко друг от друга они ни находились; у них не выявляется различий; они не изнашиваются, не стареют, то есть сколько бы времени ни прошло, они всё те же. Эти странные для частиц свойства указывают на то, что вся Вселенная состоит из бесконечного множества зеркальных отражений, словно одной и той же частицы; растëт Вселенная за счёт увеличения числа этих отражений. Геометрическое пространство Вселенной складывается как в калейдоскопе — оно регистрируется нами как бесконечное, разнообразное, не повторяющееся, но при этом если разобрать калейдоскоп — в нём только несколько цветных камушков (штук 5, наверное, точно не помню) и зеркала по периметру. Во Вселенной роль калейдоскопных камушков играет таблица Менделеева, а еë форма связанности бесконечно большого с бесконечно малым (проявляемая в однотипности элементарных частиц) играет роль калейдоскопных зеркал, то есть эта форма структурно присутствует в каждом физическом элементе в виде заряда, вращения. Каждый заряд, частица, вращение — это линзированное отражение энергетического поля Вселенной, бесконечно малое отражение бесконечно большой Вселенной, подобно тому как в каждой капле воды отражается небо, солнце, окружающий мир.
Это линзированное отражение создаёт эффект зеркала, на основе которого формируется бесконечно большая и разнообразная Вселенная из бесконечного множества однотипных частиц, складываемых друг с другом по-разному, разными способами, но в соответствии со структурным порядком, обозначенным в таблице Менделеева.
