Грокаем глубокое обучение с подкреплением
Мы учимся, взаимодействуя с окружающей средой, и получаемые вознаграждения и наказания определяют наше поведение в будущем. Глубокое обучение с подкреплением привносит этот естественный процесс в искусственный интеллект и предполагает анализ результатов для выявления наиболее эффективных путей движения вперед. Агенты глубокого обучения с подкреплением могут способствовать успеху маркетинговых кампаний, прогнозировать рост акций и побеждать гроссмейстеров в Го и шахматах.
Давайте научимся создавать системы глубокого обучения на примере увлекательных упражнений, сопровождаемых кодом на Python с подробными комментариями и понятными объяснениями. Вы увидите, как работают алгоритмы, и научитесь создавать собственных агентов глубокого обучения с подкреплением, используя оценочную обратную связь.
Давайте научимся создавать системы глубокого обучения на примере увлекательных упражнений, сопровождаемых кодом на Python с подробными комментариями и понятными объяснениями. Вы увидите, как работают алгоритмы, и научитесь создавать собственных агентов глубокого обучения с подкреплением, используя оценочную обратную связь.
Дәйексөздер505
представляю время, когда мы будем для роботов тем же, чем сейчас собаки являются для людей, и болею за машины.
Она лежит в основе так называемой временной задачи присваивания коэффициентов доверия — в определении того, какое состояние и/или действие привело к получению вознаграждения. Когда у задачи есть временная составляющая, а у действия — отложенные последствия, наградам сложно присвоить коэффициенты доверия.
В главе 2 вы научились представлять последовательные задачи принятия решений с помощью марковского процесса принятия решений (Markov decision process, MDP). В главе 3 вы узнали, как эти задачи можно выполнять с помощью алгоритмов, которые извлекают политики из MDP.
Сөреде24
1 829 кітап
808
277 кітап
760
13 кітап
77
42 кітап
62
100 кітап
39
