Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа — создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.
Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов в такой непростой и изменчивой области.
В целом, книга написано хорошим языком — читается довольно легко и быстро. Однако попытка автора найти баланс между жизненными примерами и техническими аспектами DA\DS, на мой взгляд, привела к поверхностному освещению обеих тем. Обсуждение инструментов представлено довольно обобщенно, в то время как описание реальных примеров могло бы быть более детализированным, особенно в контексте проектирования систем ML.
Оценивая последствия своего решения (особенно неудачного), в приступе самокопания мы не должны забывать, что принимали решение в условиях неопределенности.
• Если данных относительно немного и нет таблиц с миллиардами строк, то проще использовать обычную реляционную базу.
• Если данных больше миллиарда строк или требуется хорошая скорость для аналитических запросов (агрегация и выборки) — то лучше всего использовать колоночную базу данных.
• Если требуется хранить очень большой объем с сотнями миллиардов строк, вы готовы мириться с медленной скоростью или хотите иметь архив исходных данных — то Hadoop.