Изучите ключевые концепции машинного обучения‚ работая над реальными проектами! Машинное обучение — то, что поможет вам в анализе поведения клиентов, прогнозировании тенденций движения цен, оценке рисков и многом другом. Чтобы освоить машинное обучение, вам нужны отличные примеры, четкие объяснения и много практики. В книге все это есть! Автор описывает реалистичные, практичные сценарии машинного обучения, а также предельно понятно раскрывает ключевые концепции. Вы разберете интересные проекты, такие как сервис прогнозирования цен на автомобили с использованием линейной регрессии и сервис прогнозирования оттока клиентов. Вы выйдете за рамки алгоритмов и изучите важные техники, например развертывание приложений в бессерверных системах и запуск моделей с помощью Kubernetes и Kubeflow. Пришло время закатать рукава и прокачать свои навыки в области машинного обучения!
Вместо того чтобы оценивать модель по одному конкретному порогу, мы можем сделать это для целого ряда — точно так же, как мы делали это для достоверности ранее в текущей главе.
Для этого мы сначала перебираем различные пороговые значения и вычисляем значения матрицы ошибок для каждого из них